Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38793928

RESUMEN

In previous research, we presented an apparatus designed for comprehensive and systematic surveillance of trees against borers. This apparatus entailed the insertion of an uncoated waveguide into the tree trunk, enabling the transmission of micro-vibrations generated by moving or digging larvae to a piezoelectric probe. Subsequent recordings were then transmitted at predetermined intervals to a server, where analysis was conducted manually to assess the infestation status of the tree. However, this method is hampered by significant limitations when scaling to monitor thousands of trees across extensive spatial domains. In this study, we address this challenge by integrating signal processing techniques capable of distinguishing vibrations attributable to borers from those originating externally to the tree. Our primary innovation involves quantifying the impulses resulting from the fracturing of wood fibers due to borer activity. The device employs criteria such as impulse duration and a strategy of waiting for periods of relative quietness before commencing the counting of impulses. Additionally, we provide an annotated large-scale database comprising laboratory and field vibrational recordings, which will facilitate further advancements in this research domain.


Asunto(s)
Árboles , Vibración , Animales , Árboles/fisiología , Acústica , Procesamiento de Señales Asistido por Computador , Larva/fisiología
2.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36772447

RESUMEN

We present a custom platform that integrates data from several sensors measuring synchronously different variables of the beehive and wirelessly transmits all measurements to a cloud server. There is a rich literature on beehive monitoring. The choice of our work is not to use ready platforms such as Arduino and Raspberry Pi and to present a low cost and power solution for long term monitoring. We integrate sensors that are not limited to the typical toolbox of beehive monitoring such as gas, vibrations and bee counters. The synchronous sampling of all sensors every 5 min allows us to form a multivariable time series that serves in two ways: (a) it provides immediate alerting in case a measurement exceeds predefined boundaries that are known to characterize a healthy beehive, and (b) based on historical data predict future levels that are correlated with hive's health. Finally, we demonstrate the benefit of using additional regressors in the prediction of the variables of interest. The database, the code and a video of the vibrational activity of two months are made open to the interested readers.


Asunto(s)
Factores de Tiempo , Abejas , Animales , Bases de Datos Factuales
3.
Sensors (Basel) ; 19(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893798

RESUMEN

This work introduces a device for long term systematic monitoring of trees against borers. A widely applied way to detect wood-boring insects is to insert a piezoelectric probe with an uncoated waveguide in the tree trunk and listen for locomotion or feeding sounds through headphones. This approach has several shortcomings: (a) frequent manual inspection of trees is costly and impractical to scale to hundreds or thousands of trees, (b) the larvae could be present but inactive during the inspection time and, (c) when the trees are in urban environments the background noise can be significant and can mask the feeble sounds of wood-boring insects even with the use of specialized headphones. We introduce a remotely controlled device that records and wirelessly transmits on a scheduled basis short recordings of the internal vibrations of a tree to a server. The user can listen remotely or process the recording automatically to infer the infestation state of the tree with wood-boring insects that feed or move inside the tree. When integrated within the IoT framework this device can scale up to automatically monitoring the trees of the entire city. The proposed approach led to detection results in field trials of the pests Xylotrechus chinensis (Chevrolat) (Cerambycidae) and Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae).

4.
Sensors (Basel) ; 17(1)2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-28075346

RESUMEN

Insects of the Diptera order of the Tephritidae family cause costly, annual crop losses worldwide. Monitoring traps are important components of integrated pest management programs used against fruit flies. Here we report the modification of typical, low-cost plastic traps for fruit flies by adding the necessary optoelectronic sensors to monitor the entrance of the trap in order to detect, time-stamp, GPS tag, and identify the species of incoming insects from the optoacoustic spectrum analysis of their wingbeat. We propose that the incorporation of automated streaming of insect counts, environmental parameters and GPS coordinates into informative visualization of collective behavior will finally enable better decision making across spatial and temporal scales, as well as administrative levels. The device presented is at product level of maturity as it has solved many pending issues presented in a previously reported study.


Asunto(s)
Insectos , Animales , Control de Insectos , Tephritidae
5.
PLoS One ; 10(11): e0140474, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544845

RESUMEN

Monitoring traps are important components of integrated pest management applied against important fruit fly pests, including Bactrocera oleae (Gmelin) and Ceratitis capitata (Widemann), Diptera of the Tephritidae family, which effect a crop-loss/per year calculated in billions of euros worldwide. Pests can be controlled with ground pesticide sprays, the efficiency of which depends on knowing the time, location and extent of infestations as early as possible. Trap inspection is currently carried out manually, using the McPhail trap, and the mass spraying is decided based on a decision protocol. We introduce the term 'insect biometrics' in the context of entomology as a measure of a characteristic of the insect (in our case, the spectrum of its wingbeat) that allows us to identify its species and make devices to help face old enemies with modern means. We modify a McPhail type trap into becoming electronic by installing an array of photoreceptors coupled to an infrared emitter, guarding the entrance of the trap. The beating wings of insects flying in the trap intercept the light and the light fluctuation is turned to a recording. Custom-made electronics are developed that are placed as an external add-on kit, without altering the internal space of the trap. Counts from the trap are transmitted using a mobile communication network. This trap introduces a new automated remote-monitoring method different to audio and vision-based systems. We evaluate our trap in large number of insects in the laboratory by enclosing the electronic trap in insectary cages. Our experiments assess the potential of delivering reliable data that can be used to initialize reliably the spraying process at large scales but to also monitor the impact of the spraying process as it eliminates the time-lag between acquiring and delivering insect counts to a central agency.


Asunto(s)
Biometría/instrumentación , Vuelo Animal/fisiología , Control de Insectos/instrumentación , Monitoreo Ambulatorio/instrumentación , Procesamiento de Señales Asistido por Computador , Tephritidae/fisiología , Alas de Animales/fisiología , Animales , Fotometría/instrumentación
6.
Sensors (Basel) ; 14(12): 22285-99, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25429412

RESUMEN

Certain insects affect cultivations in a detrimental way. A notable case is the olive fruit fly (Bactrocera oleae (Rossi)), that in Europe alone causes billions of euros in crop-loss/per year. Pests can be controlled with aerial and ground bait pesticide sprays, the efficiency of which depends on knowing the time and location of insect infestations as early as possible. The inspection of traps is currently carried out manually. Automatic monitoring traps can enhance efficient monitoring of flying pests by identifying and counting targeted pests as they enter the trap. This work deals with the hardware setup of an insect trap with an embedded optoelectronic sensor that automatically records insects as they fly in the trap. The sensor responsible for detecting the insect is an array of phototransistors receiving light from an infrared LED. The wing-beat recording is based on the interruption of the emitted light due to the partial occlusion from insect's wings as they fly in the trap. We show that the recordings are of high quality paving the way for automatic recognition and transmission of insect detections from the field to a smartphone. This work emphasizes the hardware implementation of the sensor and the detection/counting module giving all necessary implementation details needed to construct it.


Asunto(s)
Actigrafía/instrumentación , Agricultura/instrumentación , Vuelo Animal/fisiología , Control de Insectos/instrumentación , Fotometría/instrumentación , Tephritidae/fisiología , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Monitoreo Ambulatorio/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Transductores , Transistores Electrónicos , Alas de Animales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA