Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175597, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39155001

RESUMEN

The presence of tyre and road wear particles (TRWP) in the environment is an underestimated threat due to their potential impact on ecosystems and human health. However, their mode of action and potential impacts on aquatic ecosystems remain largely unknown. In the present study, we adopted a sediment exposure scenario to investigate the influence of sediment coming from an urban runoff sedimentation basin on the life cycle of Chironomus riparius. Targeted broad-spectrum chemical analysis helped to characterise the urban sediments and confirmed the significant contribution of contaminants from traffic (e.g. tyre wear contribution, Polycyclic Aromatic Hydrocarbons [PAHs], metals, tyre rubber additives). First-stage chironomid larvae were subjected to increasing concentrations of urban whole sediment. The results showed that exposure to this urban sediment influenced all measured endpoints. In vivo quantification of ROS showed that larvae exposed to the lowest concentration of contaminated sediment exhibited increased fluorescence. The contaminated sediment conditions increased mortality by almost 30 %, but this effect was surprisingly not concentration-dependent. Fertility decreased significantly and concentration-dependently. The results of the Mean Emergence Time (EmT50) and larval size showed an optimality curve. Furthermore, as a consequence of the effects on fitness, the Population Growth Rate (PGR) exhibited a significant decrease, which was concentration-dependent. Therefore, after a single generation, PGR calculation can be adopted as a sensitive tool to monitor pollution caused by complex matrices, i.e. composed of several contaminants. Our research highlights the importance of effective management of road runoff and underlines the need for further investigation to better understand the toxicity of TRWPs.


Asunto(s)
Chironomidae , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes Químicos del Agua , Animales , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Chironomidae/efectos de los fármacos , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Organismos Acuáticos/efectos de los fármacos , Ecotoxicología , Larva/efectos de los fármacos , Ciudades
2.
Chemosphere ; 358: 142242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710409

RESUMEN

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 µg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.


Asunto(s)
Benzo(a)pireno , Chironomidae , Estrés Oxidativo , Animales , Benzo(a)pireno/toxicidad , Chironomidae/efectos de los fármacos , Chironomidae/genética , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Secuenciación Completa del Genoma , Mutágenos/toxicidad , Hidrocarburos Policíclicos Aromáticos/toxicidad , Pruebas de Mutagenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA