Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
STAR Protoc ; 3(1): 101069, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35024627

RESUMEN

Cytotoxic T lymphocytes and natural killer (NK) cells are key effector cells in immune defenses against intracellular pathogens and cancer. In human blood, effector T and NK cytotoxic cells comprise a diverse and relatively rare group of cells. Herein, we describe a simplified intracellular staining workflow for classification of circulating human T and NK cells with cytolytic potential. We suggest reagents for measuring cytolytic proteins and identification of cell subsets within conventional and unconventional T cells and NK cells.


Asunto(s)
Células Asesinas Naturales , Linfocitos T Citotóxicos , Citometría de Flujo , Humanos
2.
Diabetes ; 65(8): 2134-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27207523

RESUMEN

An allelic variant of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), PTPN22(R620W), is strongly associated with type 1 diabetes (T1D) in humans and increases the risk of T1D by two- to fourfold. The NOD mouse is a spontaneous T1D model that shares with humans many genetic pathways contributing to T1D. We hypothesized that the introduction of the murine orthologous Ptpn22(R619W) mutation to the NOD genome would enhance the spontaneous development of T1D. We microinjected CRISPR-Cas9 and a homology-directed repair template into NOD single-cell zygotes to introduce the Ptpn22(R619W) mutation to its endogenous locus. The resulting Ptpn22(R619W) mice showed increased insulin autoantibodies and earlier onset and higher penetrance of T1D. This is the first report demonstrating enhanced T1D in a mouse modeling human PTPN22(R620W) and the utility of CRISPR-Cas9 for direct genetic alternation of NOD mice.


Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatología , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Alelos , Animales , Western Blotting , Sistemas CRISPR-Cas/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Genoma/genética , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Polimorfismo de Nucleótido Simple/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 22/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Elife ; 52016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26880557

RESUMEN

ß-selection is the most pivotal event determining αß T cell fate. Here, surface-expression of a pre-T cell receptor (pre-TCR) induces thymocyte metabolic activation, proliferation, survival and differentiation. Besides the pre-TCR, ß-selection also requires co-stimulatory signals from Notch receptors - key cell fate determinants in eukaryotes. Here, we show that this Notch-dependence is established through antagonistic signaling by the pre-TCR/Notch effector, phosphoinositide 3-kinase (PI3K), and by inositol-trisphosphate 3-kinase B (Itpkb). Canonically, PI3K is counteracted by the lipid-phosphatases Pten and Inpp5d/SHIP-1. In contrast, Itpkb dampens pre-TCR induced PI3K/Akt signaling by producing IP4, a soluble antagonist of the Akt-activating PI3K-product PIP3. Itpkb(-/-) thymocytes are pre-TCR hyperresponsive, hyperactivate Akt, downstream mTOR and metabolism, undergo an accelerated ß-selection and can develop to CD4(+)CD8(+) cells without Notch. This is reversed by inhibition of Akt, mTOR or glucose metabolism. Thus, non-canonical PI3K-antagonism by Itpkb restricts pre-TCR induced metabolic activation to enforce coincidence-detection of pre-TCR expression and Notch-engagement.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptor Notch1/metabolismo , Timocitos/fisiología , Animales , Supervivencia Celular , Ratones Endogámicos C57BL
5.
Blood ; 125(18): 2786-97, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25788703

RESUMEN

Tight regulation of hematopoietic stem cell (HSC) homeostasis ensures lifelong hematopoiesis and prevents blood cancers. The mechanisms balancing HSC quiescence with expansion and differentiation into hematopoietic progenitors are incompletely understood. Here, we identify Inositol-trisphosphate 3-kinase B (Itpkb) as an essential regulator of HSC homeostasis. Young Itpkb(-/-) mice accumulated phenotypic HSC, which were less quiescent and proliferated more than wild-type (WT) controls. Itpkb(-/-) HSC downregulated quiescence and stemness associated, but upregulated activation, oxidative metabolism, protein synthesis, and lineage associated messenger RNAs. Although they had normal-to-elevated viability and no significant homing defects, Itpkb(-/-) HSC had a severely reduced competitive long-term repopulating potential. Aging Itpkb(-/-) mice lost hematopoietic stem and progenitor cells and died with severe anemia. WT HSC normally repopulated Itpkb(-/-) hosts, indicating an HSC-intrinsic Itpkb requirement. Itpkb(-/-) HSC showed reduced colony-forming activity and increased stem-cell-factor activation of the phosphoinositide-3-kinase (PI3K) effectors Akt/mammalian/mechanistic target of rapamycin (mTOR). This was reversed by treatment with the Itpkb product and PI3K/Akt antagonist IP4. Transcriptome changes and biochemistry support mTOR hyperactivity in Itpkb(-/-) HSC. Treatment with the mTOR-inhibitor rapamycin reversed the excessive mTOR signaling and hyperproliferation of Itpkb(-/-) HSC without rescuing colony forming activity. Thus, we propose that Itpkb ensures HSC quiescence and function through limiting cytokine-induced PI3K/mTOR signaling and other mechanisms.


Asunto(s)
Anemia/genética , Anemia/mortalidad , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Homeostasis/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Índice de Severidad de la Enfermedad
6.
Nature ; 504(7480): 441-5, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24226767

RESUMEN

Development of a self-tolerant T-cell receptor (TCR) repertoire with the potential to recognize the universe of infectious agents depends on proper regulation of TCR signalling. The repertoire is whittled down during T-cell development in the thymus by the ability of quasi-randomly generated TCRs to interact with self-peptides presented by major histocompatibility complex (MHC) proteins. Low-affinity TCR interactions with self-MHC proteins generate weak signals that initiate 'positive selection', causing maturation of CD4- or CD8αß-expressing 'single-positive' thymocytes from CD4(+)CD8αß(+) 'double-positive' precursors. These develop into mature naive T cells of the secondary lymphoid organs. TCR interaction with high-affinity agonist self-ligands results in 'negative selection' by activation-induced apoptosis or 'agonist selection' of functionally differentiated self-antigen-experienced T cells. Here we show that positive selection is enabled by the ability of the T-cell-specific protein Themis to specifically attenuate TCR signal strength via SHP1 recruitment and activation in response to low- but not high-affinity TCR engagement. Themis acts as an analog-to-digital converter translating graded TCR affinity into clear-cut selection outcome. By dampening mild TCR signals Themis increases the affinity threshold for activation, enabling positive selection of T cells with a naive phenotype in response to low-affinity self-antigens.


Asunto(s)
Proteínas/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Transducción de Señal/inmunología , Linfocitos T/citología , Linfocitos T/metabolismo , Timocitos/citología , Timocitos/metabolismo , Animales , Apoptosis , Autoantígenos/inmunología , Señalización del Calcio , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Ligandos , Ratones , Ratones Endogámicos C57BL , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Timocitos/inmunología
7.
PLoS One ; 8(9): e73937, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24066087

RESUMEN

The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains. In thymocytes, low-dose IP4 binding to the Itk PH domain surprisingly promoted and high-dose IP4 inhibited PIP3 binding of Itk PH domains. However, the mechanisms that underlie the regulation of membrane recruitment of Itk by IP4 and PIP3 remain unclear. The distinct Itk PH domain ability to oligomerize is consistent with a cooperative-allosteric mode of IP4 action. However, other possibilities cannot be ruled out due to difficulties in quantitatively measuring the interactions between Itk, IP4 and PIP3, and in generating non-oligomerizing Itk PH domain mutants. This has hindered a full mechanistic understanding of how IP4 controls Itk function. By combining experimentally measured kinetics of PLCγ1 phosphorylation by Itk with in silico modeling of multiple Itk signaling circuits and a maximum entropy (MaxEnt) based computational approach, we show that those in silico models which are most robust against variations of protein and lipid expression levels and kinetic rates at the single cell level share a cooperative-allosteric mode of Itk regulation by IP4 involving oligomeric Itk PH domains at the plasma membrane. This identifies MaxEnt as an excellent tool for quantifying robustness for complex TCR signaling circuits and provides testable predictions to further elucidate a controversial mechanism of PIP3 signaling.


Asunto(s)
Fosfatos de Inositol/metabolismo , Timocitos/metabolismo , Animales , Cinética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo
8.
Blood ; 121(2): 286-97, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23175687

RESUMEN

Natural killer (NK) cells have important functions in cancer immunosurveillance, BM allograft rejection, fighting infections, tissue homeostasis, and reproduction. NK cell-based therapies are promising treatments for blood cancers. Overcoming their currently limited efficacy requires a better understanding of the molecular mechanisms controlling NK cell development and dampening their effector functions. NK cells recognize the loss of self-antigens or up-regulation of stress-induced ligands on pathogen-infected or tumor cells through invariant NK cell receptors (NKRs), and then kill such stressed cells. Two second-messenger pathways downstream of NKRs are required for NK cell maturation and effector responses: PIP(3) generation by PI3K and generation of diacylglycerol and IP(3) by phospholipase-Cγ (PLCγ). In the present study, we identify a novel role for the phosphorylated IP(3) metabolite inositol (1,3,4,5)tetrakisphosphate (IP(4)) in NK cells. IP(4) promotes NK cell terminal differentiation and acquisition of a mature NKR repertoire. However, in mature NK cells, IP(4) limits NKR-induced IFNγ secretion, granule exocytosis, and target-cell killing, in part by inhibiting the PIP(3) effector-kinase Akt. This identifies IP(4) as an important novel regulator of NK cell development and function and expands our understanding of the therapeutically important mechanisms dampening NK cell responses. Our results further suggest that PI3K regulation by soluble IP(4) is a broadly important signaling paradigm.


Asunto(s)
Fosfatos de Inositol/inmunología , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Fosfatidilinositol 3-Quinasas/inmunología , Transducción de Señal/inmunología , Animales , Fosfatos de Inositol/metabolismo , Células Asesinas Naturales/metabolismo , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/inmunología , Receptores Citoplasmáticos y Nucleares/metabolismo
9.
PLoS One ; 7(9): e45158, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028816

RESUMEN

Binding of the membrane phospholipid phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) to the Pleckstrin Homology (PH) domain of the Tec family protein tyrosine kinase, Inducible T cell Kinase (ITK), is critical for the recruitment of the kinase to the plasma membrane and its co-localization with the TCR-CD3 molecular complex. Three aromatic residues, termed the FYF motif, located in the inner walls of the phospholipid-binding pocket of the ITK PH domain, are conserved in the PH domains of all Tec kinases, but not in other PH-domain containing proteins, suggesting an important function of the FYF motif in the Tec kinase family. However, the biological significance of the FYF amino acid motif in the ITK-PH domain is unknown. To elucidate it, we have tested the effects of a FYF triple mutant (F26S, Y90F, F92S), henceforth termed FYF-ITK mutant, on ITK function. We found that FYF triple mutation inhibits the TCR-induced production of IL-4 by impairing ITK binding to PIP(3), reducing ITK membrane recruitment, inducing conformational changes at the T cell-APC contact site, and compromising phosphorylation of ITK and subsequent phosphorylation of PLCγ(1). Interestingly, however, the FYF motif is dispensable for the interaction of ITK with two of its signaling partners, SLP-76 and LAT. Thus, the FYF mutation uncouples PIP(3)-mediated ITK membrane recruitment from the interactions of the kinase with key components of the TCR signalosome and abrogates ITK function in T cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia Conservada , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Interleucina-4/biosíntesis , Células Jurkat , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosfolipasa C gamma/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Linfocitos T/metabolismo , Transfección
10.
Sci Signal ; 4(202): ra84, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22155788

RESUMEN

Protein kinase C η (PKCη) is abundant in T cells and is recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell; however, its function in T cells is unknown. We showed that PKCη was required for the activation of mature CD8+ T cells through the T cell receptor. Compared with wild-type T cells, PKCη-/- T cells showed poor proliferation in response to antigen stimulation, a trait shared with T cells deficient in PKCθ, which is the most abundant PKC isoform in T cells and was thought to be the only PKC isoform with a specific role in T cell activation. In contrast, only PKCη-deficient T cells showed defective homeostatic proliferation, which requires self-antigen recognition. PKCη was dispensable for thymocyte development; however, thymocytes from mice doubly deficient in PKCη and PKCθ exhibited poor development, indicating some redundancy between the PKC isoforms. Deficiency in PKCη or PKCθ had opposing effects on the relative numbers of CD4+ and CD8+ T cells. PKCη-/- mice had a higher ratio of CD4+ to CD8+ T cells compared to that of wild-type mice, whereas PKCθ-/- mice had a lower ratio. Mice deficient in both isoforms exhibited normal cell ratios. Together, these data suggest that PKCη shares some redundant roles with PKCθ in T cell biology and also performs nonredundant functions that are required for T cell homeostasis and activation.


Asunto(s)
Proteína Quinasa C/inmunología , Linfocitos T/enzimología , Linfocitos T/inmunología , Animales , Secuencia de Bases , Relación CD4-CD8 , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/enzimología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Señalización del Calcio , Proliferación Celular , Homeostasis , Memoria Inmunológica/fisiología , Sinapsis Inmunológicas/enzimología , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Fenotipo , Proteína Quinasa C/deficiencia , Proteína Quinasa C/genética , Proteína Quinasa C-theta , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/inmunología , Linfocitos T/citología
11.
Blood ; 118(2): 252-61, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21543760

RESUMEN

The present study focuses on a large family with an X-linked immunodeficiency in which there are variable clinical and laboratory phenotypes, including recurrent viral and bacterial infections, hypogammaglobulinemia, Epstein-Barr virus-driven lymphoproliferation, splenomegaly, colitis, and liver disease. Molecular and genetic analyses revealed that affected males were carriers of a hypomorphic hemizygous mutation in XIAP (XIAP(G466X)) that cosegregated with a rare polymorphism in CD40LG (CD40 ligand(G219R)). These genes are involved in the X-linked lymphoproliferative syndrome 2 and the X-linked hyper-IgM syndrome, respectively. Single expression of XIAP(G466X) or CD40L(G219R) had no or minimal effect in vivo, although in vitro, they lead to altered functional activities of their gene products, which suggests that the combination of XIAP and CD40LG mutations contributed to the expression of clinical manifestations observed in affected individuals. Our report of a primary X-linked immunodeficiency of oligogenic origin emphasizes that primary immunodeficiencies are not caused by a single defective gene, which leads to restricted manifestations, but are likely to be the result of an interplay between several genetic determinants, which leads to more variable clinical phenotypes.


Asunto(s)
Ligando de CD40/genética , Inmunodeficiencia Variable Común/genética , Trastornos Linfoproliferativos/genética , Polimorfismo de Nucleótido Simple , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Adolescente , Adulto , Arginina/genética , Niño , Epistasis Genética/fisiología , Familia , Femenino , Genes Ligados a X , Glutamina/genética , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Polimorfismo de Nucleótido Simple/fisiología , Adulto Joven
12.
Blood ; 117(5): 1522-9, 2011 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-21119115

RESUMEN

X-linked lymphoproliferative syndromes (XLP) are primary immunodeficiencies characterized by a particular vulnerability toward Epstein-Barr virus infection, frequently resulting in hemophagocytic lymphohistiocytosis (HLH). XLP type 1 (XLP-1) is caused by mutations in the gene SH2D1A (also named SAP), whereas mutations in the gene XIAP underlie XLP type 2 (XLP-2). Here, a comparison of the clinical phenotypes associated with XLP-1 and XLP-2 was performed in cohorts of 33 and 30 patients, respectively. HLH (XLP-1, 55%; XLP-2, 76%) and hypogammaglobulinemia (XLP-1, 67%; XLP-2, 33%) occurred in both groups. Epstein-Barr virus infection in XLP-1 and XLP-2 was the common trigger of HLH (XLP-1, 92%; XLP-2, 83%). Survival rates and mean ages at the first HLH episode did not differ for both groups, but HLH was more severe with lethal outcome in XLP-1 (XLP-1, 61%; XLP-2, 23%). Although only XLP-1 patients developed lymphomas (30%), XLP-2 patients (17%) had chronic hemorrhagic colitis as documented by histopathology. Recurrent splenomegaly often associated with cytopenia and fever was preferentially observed in XLP-2 (XLP-1, 7%; XLP-2, 87%) and probably represents minimal forms of HLH as documented by histopathology. This first phenotypic comparison of XLP subtypes should help to improve the diagnosis and the care of patients with XLP conditions.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Trastornos Linfoproliferativos/diagnóstico , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Técnicas para Inmunoenzimas , Lactante , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/terapia , Masculino , Persona de Mediana Edad , Mutación/genética , Fenotipo , Estudios Retrospectivos , Proteína Asociada a la Molécula de Señalización de la Activación Linfocitaria , Tasa de Supervivencia , Adulto Joven
14.
Nature ; 444(7115): 110-4, 2006 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-17080092

RESUMEN

The homeostasis of the immune response requires tight regulation of the proliferation and apoptosis of activated lymphocytes. In humans, defects in immune homeostasis result in lymphoproliferation disorders including autoimmunity, haemophagocytic lymphohystiocytosis and lymphomas. The X-linked lymphoproliferative syndrome (XLP) is a rare, inherited immunodeficiency that is characterized by lymphohystiocytosis, hypogammaglobulinaemia and lymphomas, and that usually develops in response to infection with Epstein-Barr virus (EBV). Mutations in the signalling lymphocyte activation molecule (SLAM)-associated protein SAP, a signalling adaptor molecule, underlie 60% of cases of familial XLP. Here, we identify mutations in the gene that encodes the X-linked inhibitor-of-apoptosis XIAP (also termed BIRC4) in patients with XLP from three families without mutations in SAP. These mutations lead to defective expression of XIAP. We show that apoptosis of lymphocytes from XIAP-deficient patients is enhanced in response to various stimuli including the T-cell antigen receptor (TCR)-CD3 complex, the death receptor CD95 (also termed Fas or Apo-1) and the TNF-associated apoptosis-inducing ligand receptor (TRAIL-R). We also found that XIAP-deficient patients, like SAP-deficient patients, have low numbers of natural killer T-lymphocytes (NKT cells), indicating that XIAP is required for the survival and/or differentiation of NKT cells. The observation that XIAP-deficiency and SAP-deficiency are both associated with a defect in NKT cells strengthens the hypothesis that NKT cells have a key role in the immune response to EBV. Furthermore, by identifying an XLP immunodeficiency that is caused by mutations in XIAP, we show that XIAP is a potent regulator of lymphocyte homeostasis in vivo.


Asunto(s)
Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , Proteína Inhibidora de la Apoptosis Ligada a X/deficiencia , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Adulto , Apoptosis , Secuencia de Bases , Niño , Preescolar , Femenino , Homeostasis , Humanos , Lactante , Trastornos Linfoproliferativos/inmunología , Masculino , Mutación/genética , Linaje , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...