Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(2): 364-382, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272033

RESUMEN

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomiopatía Dilatada , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corazón , Trastornos del Neurodesarrollo/genética
2.
iScience ; 25(11): 105303, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36304100

RESUMEN

With the recent findings that mutations in the gene encoding the α-subunit of calcium/calmodulin-dependent protein kinase II (CAMK2A) causes a neurodevelopmental disorder (NDD), it is of great therapeutic relevance to know if there exists a critical developmental time window in which CAMK2A needs to be expressed for normal brain development, or whether expression of the protein at later stages is still beneficial to restore normal functioning. To answer this question, we generated an inducible Camk2a mouse model, which allows us to express CAMK2A at any desired time. Here, we show that adult expression of CAMK2A rescues the behavioral and electrophysiological phenotypes seen in the Camk2a knock-out mice, including spatial and conditional learning and synaptic plasticity. These results suggest that CAMK2A does not play a critical irreversible role in neurodevelopment, which is of importance for future therapies to treat CAMK2A-dependent disorders.

3.
Front Neurosci ; 16: 1086994, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685241

RESUMEN

Introduction: The gamma subunit of calcium/calmodulin-dependent protein kinase 2 (CAMK2G) is expressed throughout the brain and is associated with neurodevelopmental disorders. Research on the role of CAMK2G is limited and attributes different functions to specific cell types. Methods: To further expand on the role of CAMK2G in brain functioning, we performed extensive phenotypic characterization of a Camk2g knockout mouse. Results: We found different CAMK2G isoforms that show a distinct spatial expression pattern in the brain. Additionally, based on our behavioral characterization, we conclude that CAMK2G plays a minor role in hippocampus-dependent learning and synaptic plasticity. Rather, we show that CAMK2G is required for motor function and that the loss of CAMK2G results in impaired nest-building and marble burying behavior, which are innate behaviors that are associated with impaired neurodevelopment. Discussion: Taken together, our results provide evidence for a unique function of this specific CAMK2 isozyme in the brain and further support the role of CAMK2G in neurodevelopment.

4.
J Insect Physiol ; 117: 103896, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31194973

RESUMEN

Most organisms have an endogenous circadian clock with a period length of approximately 24 h that enables adaptation, synchronization and anticipation to environmental cycles. The circadian system (circa = about or around, diem = a day) may provide evolutionary benefits when entrained to the 24-h light-dark cycle. The more the internal circadian period (τ) deviates from the external light-dark cycle, the larger the daily phase shifts need to be to synchronize to the environment. In some species, large daily phase shifts reduce survival rate. Here we tested this 'resonance fitness hypothesis' on the diurnal wasp Nasonia vitripennis, which exhibits a large latitudinal cline in free-running period with longer circadian period lengths in the north than in the south. Longevity was measured in northern and southern wasps placed into light-dark cycles (T-cycles) with periods ranging from 20 h to 28 h. Further, locomotor activity was recorded to estimate range and phase angle of entrainment under these various T-cycles. A light pulse induced phase response curve (PRC) was measured in both lines to understand entrainment results. We expected a concave survival curve with highest longevity at T = τ and a reduction in longevity the further τ deviates from T (τ/T<>1). Our results do not support this resonance fitness hypothesis. We did not observe a reduction in longevity when τ deviates from T. Our results may be understood by the strong circadian light resetting mechanism (type 0 PRC) to single light pulses that we measured in Nasonia, resulting in: (1) the broad range of entrainment, (2) the wide natural variation in circadian free-running period, and (3) the lack of reduced survival when τ/T ratio's deviates from 1. Together this indicates that circadian adaption to latitude may lead to changes in circadian period and light response, without negative influences on survival.


Asunto(s)
Ritmo Circadiano , Longevidad , Avispas/fisiología , Adaptación Biológica , Animales , Evolución Biológica , Femenino , Masculino , Fotoperiodo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...