Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 2836-2847, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412249

RESUMEN

The field of synthetic nucleic acids with novel backbone structures [xenobiotic nucleic acids (XNAs)] has flourished due to the increased importance of XNA antisense oligonucleotides and aptamers in medicine, as well as the development of XNA processing enzymes and new XNA genetic materials. Molecular modeling on XNA structures can accelerate rational design in the field of XNAs as it contributes in understanding and predicting how changes in the sugar-phosphate backbone impact on the complementation properties of the nucleic acids. To support the development of novel XNA polymers, we present a first-in-class open-source program (Ducque) to build duplexes of nucleic acid analogs with customizable chemistry. A detailed procedure is described to extend the Ducque library with new user-defined XNA fragments using quantum mechanics (QM) and to generate QM-based force field parameters for molecular dynamics simulations within standard packages such as AMBER. The tool was used within a molecular modeling workflow to accurately reproduce a selection of experimental structures for nucleic acid duplexes with ribose-based as well as non-ribose-based nucleosides. Additionally, it was challenged to build duplexes of morpholino nucleic acids bound to complementary RNA sequences.


Asunto(s)
Simulación de Dinámica Molecular , Morfolinos , Ácidos Nucleicos , ARN , Programas Informáticos , Morfolinos/química , Conformación de Ácido Nucleico , Ácidos Nucleicos/química , Oligonucleótidos/química , ARN/química , Programas Informáticos/normas
2.
Nucleic Acids Res ; 51(15): 7736-7748, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37439359

RESUMEN

Nucleic acids not only form the basis of heredity, but are increasingly a source of novel nano-structures, -devices and drugs. This has spurred the development of chemically modified alternatives (xeno nucleic acids (XNAs)) comprising chemical configurations not found in nature to extend their chemical and functional scope. XNAs can be evolved into ligands (XNA aptamers) that bind their targets with high affinity and specificity. However, detailed investigations into structural and functional aspects of XNA aptamers have been limited. Here we describe a detailed structure-function analysis of LYS-S8-19, a 1',5'-anhydrohexitol nucleic acid (HNA) aptamer to hen egg-white lysozyme (HEL). Mapping of the aptamer interaction interface with its cognate HEL target antigen revealed interaction epitopes, affinities, kinetics and hot-spots of binding energy similar to protein ligands such as anti-HEL-nanobodies. Truncation analysis and molecular dynamics (MD) simulations suggest that the HNA aptamer core motif folds into a novel and not previously observed HNA tertiary structure, comprising non-canonical hT-hA-hT/hT-hT-hT triplet and hG4-quadruplex structures, consistent with its recognition by two different G4-specific antibodies.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Ácidos Nucleicos , Ligandos , Aptámeros de Nucleótidos/química , Ácidos Nucleicos/química , Simulación de Dinámica Molecular , Técnica SELEX de Producción de Aptámeros
3.
Eur J Med Chem ; 255: 115379, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37120998

RESUMEN

Molecular dynamics (MD) simulations provided insights into the favorable interactions between xylose nucleosides bearing a phosphonate moiety at their 3'-position and specific residues at the active site of the archetypal RNA-dependent RNA-polymerase (RdRp) of Enterovirus 71. Therefore, a series of xylosyl nucleoside phosphonates with adenine, uracil, cytosine, guanosine, and hypoxanthine as nucleobases were synthesized through multistep sequences starting from a single common precursor. Following antiviral activity evaluation, the adenine containing analogue was found to possess good antiviral activity against RNA viruses displaying an EC50 of 12 and 16 µM against measles virus (MeV) and enterovirus-68 (EV-68), respectively, whereas lacking cytotoxicity.


Asunto(s)
Antivirales , Organofosfonatos , Antivirales/química , Nucleósidos/química , Organofosfonatos/química , Relación Estructura-Actividad , Adenina , ARN
4.
ACS Pharmacol Transl Sci ; 4(4): 1379-1389, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34423272

RESUMEN

T-type calcium (CaV3) channels play a crucial role in the generation and propagation of action potentials in excitable cells and are considered potential drug targets for the treatment of neurological and cardiovascular diseases. Given the limited pharmacological repertoire for these channels, there is a great need for novel potent and selective CaV3 channel inhibitors. In this study, we used Xenopus oocytes to heterologously express CaV3.1 channels and characterized the interaction with a small cyclic peptide, PnCS1. Using molecular modeling, PnCS1 was docked into the cryo-electron microscopy structure of the human CaV3.1 channel and molecular dynamics were performed on the resultant complex. The binding site of the peptide was mapped with the involvement of critical amino acids located in the pore region and fenestrations of the channel. More specifically, we found that PnCS1 reclines in the central cavity of the pore domain of the CaV3.1 channel and resides stably between the selectivity filter and the intracellular gate, blocking the conduction pathway of the channel. Using Multiple Attribute Positional Scanning approaches, we developed a series of PnCS1 analogues. These analogues had a reduced level of inhibition, confirming the importance of specific residues and corroborating our modeling. In summary, functional studies of PnCS1 on the CaV3.1 channel combined with molecular dynamics results provide the basis for understanding the molecular interactions of PnCS1 with CaV3.1 and are fundamental to structure-based drug discovery for treating CaV3 channelopathies.

5.
J Chem Theory Comput ; 17(6): 3814-3823, 2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34000809

RESUMEN

Puckering of the sugar unit in nucleosides and nucleotides is an important structural aspect that directly influences the helical structure of nucleic acids. The preference for specific puckering modes in nucleic acids can be analyzed via in silico conformational analysis, but the large amount of conformations and the accuracy of the analysis leads to an extensive amount of computational time. In this paper, we show that the combination of geometry optimizations with the HF-3c method with single point energies at the RI-MP2 level results in accurate results for the puckering potential energy surface (PES) of DNA and RNA nucleosides while significantly reducing the necessary computational time. Applying this method to a series of known xeno nucleic acids (XNAs) allowed us to rapidly explore the puckering PES of each of the respective nucleosides and to explore the puckering PES of six-membered modified XNA (HNA and ß-homo-DNA) for the first time.


Asunto(s)
Nucleósidos/química , Ribosa/química , ADN/química , Modelos Moleculares , Conformación de Ácido Nucleico , Teoría Cuántica , ARN/química , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...