Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 43(15): 3497-3500, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067694

RESUMEN

We report the synchronization of two actively Q-switched fiber lasers operating at 1.5 µm and 2 µm with a shared broadband graphene electro-optic modulator. Two graphene monolayer sheets separated with a high-kHfO2 dielectric layer are configured to enable broadband light modulation. The graphene electro-optic modulator is shared by two optical fiber laser cavities (i.e., an erbium-doped fiber laser cavity and a thulium/holmium-codoped fiber laser cavity) to actively Q-switch the two lasers, resulting in stable synchronized pulses at 1.5 µm and 2 µm with a repetition rate ranging from 46 kHz to 56 kHz.

2.
Nanotechnology ; 28(48): 485203, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972503

RESUMEN

The quality of graphene in nanodevices has increased hugely thanks to the use of hexagonal boron nitride as a supporting layer. This paper studies to which extent hBN together with channel length scaling can be exploited in graphene field-effect transistors (GFETs) to get a competitive radio-frequency (RF) performance. Carrier mobility and saturation velocity were obtained from an ensemble Monte Carlo simulator that accounted for the relevant scattering mechanisms (intrinsic phonons, scattering with impurities and defects, etc). This information is fed into a self-consistent simulator, which solves the drift-diffusion equation coupled with the two-dimensional Poisson's equation to take full account of short channel effects. Simulated GFET characteristics were benchmarked against experimental data from our fabricated devices. Our simulations show that scalability is supposed to bring to RF performance an improvement that is, however, highly limited by instability. Despite the possibility of a lower performance, a careful choice of the bias point can avoid instability. Nevertheless, maximum oscillation frequencies are still achievable in the THz region for channel lengths of a few hundreds of nanometers.

3.
Adv Mater ; 28(9): 1845-52, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26727653

RESUMEN

A field-effect device based on dual graphene-GaSe heterojunctions is demonstrated. Monolayer graphene is used as electrodes on a GaSe channel to form two opposing Schottky diodes controllable by local top gates. The device exhibits strong rectification with tunable threshold voltage. Detailed theoretical modeling is used to explain the device operation and to distinguish the differences compared to a single diode.

4.
ACS Nano ; 9(6): 6297-304, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26027751

RESUMEN

A reproducible route for tuning localized surface plasmon resonance in scattering type near-field optical microscopy probes is presented. The method is based on the production of a focused-ion-beam milled single groove near the apex of electrochemically etched gold tips. Electron energy-loss spectroscopy and scanning transmission electron microscopy are employed to obtain highly spatially and spectroscopically resolved maps of the milled probes, revealing localized surface plasmon resonance at visible and near-infrared wavelengths. By changing the distance L between the groove and the probe apex, the localized surface plasmon resonance energy can be fine-tuned at a desired absorption channel. Tip-enhanced Raman spectroscopy is applied as a test platform, and the results prove the reliability of the method to produce efficient scattering type near-field optical microscopy probes.

5.
ACS Nano ; 9(6): 5666-74, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25961680

RESUMEN

We present prominent tunable and switchable room-temperature rectification performed at 100 kHz ac input utilizing micrometer-scale three-terminal junction field-effect devices. Monolayer CVD graphene is used as both a channel and a gate electrode to achieve all-graphene thin-film structure. Instead of ballistic theory, we explain the rectification characteristics through an electric-field capacitive model based on self-gating in the high source-drain bias regime. Previously, nanoscale graphene three-terminal junctions with the ballistic (or quasi-ballistic) operation have shown rectifications with relatively low efficiency. Compared to strict nanoscale requirements of ballistic devices, diffusive operation gives more freedom in design and fabrication, which we have exploited in the cascading device architecture. This is a significant step for all-graphene thin-film devices for integrated monolithic graphene circuits.

6.
Sci Rep ; 5: 10334, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25989113

RESUMEN

Gallium selenide (GaSe) is a layered semiconductor and a well-known nonlinear optical crystal. The discovery of graphene has created a new vast research field focusing on two-dimensional materials. We report on the nonlinear optical properties of few-layer GaSe using multiphoton microscopy. Both second- and third-harmonic generation from few-layer GaSe flakes were observed. Unexpectedly, even the peak at the wavelength of 390 nm, corresponding to the fourth-harmonic generation or the sum frequency generation from third-harmonic generation and pump light, was detected during the spectral measurements in thin GaSe flakes.

7.
Nanotechnology ; 25(35): 355701, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25116235

RESUMEN

Graphene has attracted attention as a potential strengthening material and functional component in suspended membranes as utilized in micro and nanosystems. Development of a practical and scalable fabrication process is a necessary step to allow the exceptional material properties of graphene to be fully exploited in composite structures. Using standard and scalable microfabrication processes, we fabricated free-standing chemical vapor deposition monolayer graphene-reinforced Al2O3 composite membranes, 0.5 mm in diameter, that are strong and robust. Bulge tests revealed that the graphene reinforcement increased the membrane fracture strength by a factor of at least three and maximum sustainable strain from 0.28% to at least 0.69%. We show that the graphene-reinforced membranes are even tolerant to significant cracking without loss of membrane integrity. The graphene composite membranes' freestanding area of ∼ 200 000 µm(2) is almost a thousand times larger than suspended graphene membranes reported elsewhere. The presented graphene composite membranes may be seen as representing an interesting new class of durable composite materials warranting further study and having potential for broad applicability in a variety of fields.

8.
ACS Nano ; 7(10): 8441-6, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24025127

RESUMEN

Single- and few-layer graphene was studied with simultaneous third-harmonic and multiphoton-absorption-excited fluorescence microscopy using a compact 1.55 µm mode-locked fiber laser source. Strong third-harmonic generation (THG) and multiphoton-absorption-excited fluorescence (MAEF) signals were observed with high contrast over the signal from the substrate. High contrast was also achieved between single- and bilayer graphene. The measurement is straightforward and very fast compared to typical Raman mapping, which is the conventional method for characterization of graphene. Multiphoton microscopy is also proved to be an extremely efficient method for detecting certain structural features in few-layer graphene. The accuracy and speed of multiphoton microscopy make it a very promising characterization technique for fundamental research as well as large-scale fabrication of graphene. To our knowledge, this is the first time simultaneous THG and MAEF microscopy has been utilized in the characterization of graphene. This is also the first THG microscopy study on graphene using the excitation wavelength of 1.55 µm, which is significant in telecommunications and signal processing.

9.
Nanotechnology ; 24(39): 395202, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-24013367

RESUMEN

Using single-layer CVD graphene, a complementary field effect transistor (FET) device is fabricated on the top of separated back-gates. The local back-gate control of the transistors, which operate with low bias at room temperature, enables highly tunable device characteristics due to separate control over electrostatic doping of the channels. Local back-gating allows control of the doping level independently of the supply voltage, which enables device operation with very low VDD. Controllable characteristics also allow the compensation of variation in the unintentional doping typically observed in CVD graphene. Moreover, both p-n and n-p configurations of FETs can be achieved by electrostatic doping using the local back-gate. Therefore, the device operation can also be switched from inverter to voltage controlled resistor, opening new possibilities in using graphene in logic circuitry.

10.
Nanotechnology ; 23(11): 115201, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22383430

RESUMEN

We demonstrate nonlinear behavior in three-terminal T-branch graphene devices at room temperature. A rectified nonlinear output at the center branch is observed when the device is biased by a push-pull configuration. Nonlinearity is assumed to arise from a difference in charge transfer through the metal­graphene contact barrier between two contacts. The sign of the rectification can be altered by changing the carrier type using the back-gate voltage.

11.
Nano Lett ; 5(8): 1541-3, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16089485

RESUMEN

Transformation of self-assembled InAs quantum dots (QDs) on InP(100) into quantum rings (QRs) is studied. In contrast to the typical approach to III--V semiconductor QR growth, the QDs are not capped to form rings. Atomic force micrographs reveal a drastic change from InAs QDs into rings after a growth interruption in tertiarybutylphosphine ambient. Strain energy relief in the InAs QD is discussed and a mechanism for dot-to-ring transformation by As/P exchange reactions is proposed.


Asunto(s)
Arsenicales/química , Cristalización/métodos , Indio/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Fosfinas/química , Puntos Cuánticos , Arsenicales/análisis , Indio/análisis , Ensayo de Materiales , Conformación Molecular , Nanoestructuras/análisis , Transición de Fase , Fosfinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...