Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(6): e1011455, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37347786

RESUMEN

XIAP is an endogenous inhibitor of cell death and inactivating mutations of XIAP are responsible for X-linked lymphoproliferative disease (XLP-2) and primary immunodeficiency, but the mechanism(s) behind these contradictory outcomes have been unclear. We report that during infection of macrophages and dendritic cells with various intracellular bacteria, XIAP restricts cell death and secretion of IL-1ß but promotes increased activation of NFκB and JNK which results in elevated secretion of IL-6 and IL-10. Poor secretion of IL-6 by Xiap-deficient antigen presenting cells leads to poor expansion of recently activated CD8 T cells during the priming phase of the response. On the other hand, Xiap-deficient CD8 T cells displayed increased proliferation and effector function during the priming phase but underwent enhanced contraction subsequently. Xiap-deficient CD8 T cells underwent skewed differentiation towards short lived effectors which resulted in poor generation of memory. Consequently Xiap-deficient CD8 T cells failed to provide effective control of bacterial infection during re-challenge. These results reveal the temporal impact of XIAP in promoting the fitness of activated CD8 T cells through cell extrinsic and intrinsic mechanisms and provide a mechanistic explanation of the phenotype observed in XLP-2 patients.


Asunto(s)
Interleucina-6 , Trastornos Linfoproliferativos , Humanos , Muerte Celular , Trastornos Linfoproliferativos/genética , Macrófagos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Memoria Inmunológica , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
2.
J Biol Chem ; 293(30): 11913-11927, 2018 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-29899110

RESUMEN

Monocytes differentiate into macrophages, which deactivate invading pathogens. Macrophages can be resistant to cell death mechanisms in some situations, and the mechanisms involved are not clear. Here, using mouse immune cells, we investigated whether the differentiation of macrophages affects their susceptibility to cell death by the ripoptosome/necrosome pathways. We show that treatment of macrophages with a mimetic of second mitochondrial activator of caspases (SMAC) resulted in ripoptosome-driven cell death that specifically depended on tumor necrosis factor α (TNFα) expression and the receptor-interacting serine/threonine protein kinase 1 (RipK1)-RipK3-caspase-8 interaction in activated and cycling macrophages. Differentiation of macrophages increased the expression of pro-inflammatory cytokines but reduced RipK1-dependent cell death and the RipK3-caspase-8 interaction. The expression of the anti-apoptotic mediators, X-linked inhibitor of apoptosis protein (XIAP) and caspase-like apoptosis regulatory protein (cFLIPL), also increased in differentiated macrophages, which inhibited caspase activation. The resistance to cell death was abrogated in XIAP-deficient macrophages. However, even in the presence of increased XIAP expression, inhibition of the mitogen-activated protein kinase (MAPK) p38 and MAPK-activated protein kinase 2 (MK2) made differentiated macrophages susceptible to cell death. These results suggest that the p38/MK2 pathway overrides apoptosis inhibition by XIAP and that acquisition of resistance to cell death by increased expression of XIAP and cFLIPL may allow inflammatory macrophages to participate in pathogen control for a longer duration.


Asunto(s)
Inflamación/inmunología , Proteínas Inhibidoras de la Apoptosis/inmunología , Macrófagos/inmunología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Animales , Apoptosis , Diferenciación Celular , Células Cultivadas , Macrófagos/citología , Ratones Endogámicos C57BL
3.
Cell Death Dis ; 9(6): 592, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789521

RESUMEN

Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses.


Asunto(s)
Apoptosis , Citocinas/biosíntesis , Proteolisis , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas Inhibidoras de la Apoptosis/metabolismo , Lisina/metabolismo , Ratones Endogámicos C57BL , Necrosis , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA