Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 142: 8-31, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28442170

RESUMEN

Metallodrugs offer potential for unique mechanism of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry as many new approaches to the design of innovative metal-based anticancer drugs are emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. Examples of metal compounds and chelating agents currently in clinical use, clinical trials or preclinical development are highlighted.


Asunto(s)
Antineoplásicos/farmacología , Complejos de Coordinación/farmacología , Oro/farmacología , Neoplasias/tratamiento farmacológico , Paladio/farmacología , Platino (Metal)/farmacología , Rutenio/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Complejos de Coordinación/química , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/toxicidad , Descubrimiento de Drogas , Oro/química , Oro/uso terapéutico , Oro/toxicidad , Humanos , Paladio/química , Paladio/uso terapéutico , Paladio/toxicidad , Platino (Metal)/química , Platino (Metal)/uso terapéutico , Platino (Metal)/toxicidad , Rutenio/química , Rutenio/uso terapéutico , Rutenio/toxicidad
2.
Dalton Trans ; 46(7): 2360-2369, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28139789

RESUMEN

In this study, we investigated the ability of Ru(ii) polypyridyl complexes to act as DNA binders. The substitution reactions of three Ru(ii) chlorophenyl terpyridine complexes, i.e. [Ru(Cl-Ph-tpy)(en)Cl]Cl (1), [Ru(Cl-Ph-tpy)(dach)Cl]Cl (2) and [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) (Cl-Ph-tpy = 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine, en = 1,2-diaminoethane, dach = 1,2-diaminocyclohexane, bpy = 2,2'-bipyridine), with a mononucleotide guanosine-5'-monophosphate (5'-GMP) and oligonucleotides such as fully complementary 15-mer and 22-mer duplexes with a centrally located GG-binding site for DNA, and fully complementary 13-mer duplexes with a centrally located GG-binding site for RNA were studied quantitatively by UV-Vis spectroscopy. Duplex RNA reacts faster with complexes 1-3 than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. The measured enthalpies and entropies of activation (ΔH≠ > 0, ΔS≠ < 0) support an associative mechanism for the substitution process. 1H NMR spectroscopy studies performed on complex 3 demonstrated that after the hydrolysis of the Cl ligand, it is capable to interact with guanine derivatives (i.e., 9-methylguanine (9MeG) and 5'-GMP) through N7, forming monofunctional adducts. The molecular structure of the cationic compound [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) was determined in the solid state by X-ray crystallography. The interactions of 1-3 with calf thymus (CT) and herring testes (HT) DNA were examined by stopped-flow spectroscopy, in which HT DNA was sensibly more reactive than CT DNA. The reactivity towards the formation of Ru-DNA adducts was also revealed by a gel mobility shift assay, showing that complexes 1 and 2 have a stronger DNA unwinding ability compared to complex 3. Overall, the complexes with bidentate aliphatic diamines proved to be superior to those with bpy in terms of capability to bind to the here studied biomolecules.


Asunto(s)
ADN/química , Oligonucleótidos/química , Compuestos Organometálicos/química , Piridinas/química , Rutenio/química , Células A549 , Animales , Secuencia de Bases , Bovinos , ADN/genética , Guanina/química , Células HeLa , Humanos , Cinética
3.
J Inorg Biochem ; 169: 1-12, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28088012

RESUMEN

In this study, we have developed a series of new monofunctional Ru(II) complexes of the general formula mer-[Ru(Cl-Ph-tpy)(N-N)Cl]Cl in which Cl-Ph-tpy is 4'-(4-chlorophenyl)-2,2':6',2″-terpyridine, N-N is a bidentate chelating ligand (1,2-diaminoethane (en, 1), 1,2-diaminocyclohexane (dach, 2) or 2,2'-bipyridine (bpy, 3)). All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV-Vis, 1D and 2D NMR). Their chemical behavior in aqueous solution was studied by UV-Vis and NMR spectroscopy showing that all compounds are relatively labile leading to the formation of the corresponding aqua species 1aq-3aq. Their DNA binding ability was evaluated by UV-Vis spectroscopy, fluorescence quenching measurements and viscosity measurements. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv=1.1-2.7×104M-1). These experiments show that the ruthenium complexes interact with DNA via intercalation. The complexes bind to serum protein albumin displaying relatively high binding constants (Ksv=104-105M-1). Compound 3 displayed from high to moderate cytotoxicity against two cancer cell lines HeLa and A549 (with IC50ca. 12.7µM and 53.8µM, respectively), while complexes 1 and 2 showed only moderate cytotoxicity (with IC50ca. 84.8µM and 96.3µM, respectively) against HeLa cells. The cell cycle analysis (by flow cytometry) of HeLa and A549 cells treated with complex 3 shows minor changes on the cell cycle phase distribution.


Asunto(s)
ADN/metabolismo , Sustancias Intercalantes/química , Sustancias Intercalantes/síntesis química , Compuestos de Rutenio/química , Compuestos de Rutenio/síntesis química , Rutenio/química , Albúmina Sérica Bovina/metabolismo , Células A549 , Animales , Bovinos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , ADN/química , Células HeLa , Humanos , Sustancias Intercalantes/efectos adversos , Unión Proteica , Compuestos de Rutenio/efectos adversos , Albúmina Sérica Bovina/química
4.
J Inorg Biochem ; 159: 89-95, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970034

RESUMEN

Hyphenated mass spectrometry (MS) techniques have attained an important position in analysis of covalent and non-covalent interactions of metal complexes with peptides and proteins. The aim of the present study was to qualitatively and quantitatively determine ruthenium binding sites on a protein using tandem mass spectrometry and allied techniques, i.e. liquid chromatography (LC) and inductively coupled plasma optical emission spectrometry (ICP-OES). For that purpose, two newly synthesized Ru(II) complexes of a meridional geometry, namely mer-[Ru(4' Cl-tpy)(en)Cl](+) (1) and mer-[Ru(4' Cl-tpy)(dach)Cl](+) (2) (where 4' Cl-tpy=4'-chloro-2,2':6',2″-terpyridine, en=1,2-diaminoethane and dach=1,2-diaminocyclohexane), and bovine serum albumin were used. The binding of the complexes to the protein was investigated by means of size exclusion- and reversed phase-LC, ICP OES, matrix-assisted laser desorption ionization MS and MS/MS. Ruthenated peptide sequence and a binding target amino acid were revealed through accurate elucidation of MS/MS spectra. The results obtained in this study suggest a high binding capacity of the protein towards both complexes, with up to 5.77±0.14 and 6.95±0.43mol of 1 and 2 bound per mol of protein, respectively. The proposed binding mechanism for the selected complexes includes the release of Cl ligand, its replacement with water molecule and further coordination to electron donor histidine residue.


Asunto(s)
Rutenio/química , Albúmina Sérica Bovina/química , Animales , Sitios de Unión , Bovinos , Espectrometría de Masas
5.
Dalton Trans ; 45(11): 4633-46, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26855406

RESUMEN

In this study, two representatives of previously synthesized ruthenium(ii) terpyridine complexes, i.e., [Ru(Cl-tpy)(en)Cl][Cl] (1) and [Ru(Cl-tpy)(dach)Cl][Cl] (2), were chosen and a detailed study of the kinetic parameters of their reactivity toward l-histidine (l-His), using the UV-Vis and (1)H NMR techniques, was developed. The inner molecular rearrangement from N3-coordinated l-His to the N1 bound isomer, observable in the NMR data, was corroborated by DFT calculations favoring N1 coordination by nearly 4 kcal mol(-1). These two ruthenium(ii) terpyridine complexes were investigated for their interactions with DNA employing UV-Vis spectroscopy, DNA viscosity measurements and fluorescence quenching measurements. The high binding constants obtained in the DNA binding studies (Kb = 10(4)-10(5) M(-1)) suggest a strong binding of the complexes to calf thymus (CT) DNA. Competitive studies with ethidium bromide (EB) showed that the complexes can displace DNA-bound EB, suggesting strong competition with EB (Ksv = 1.5-2.5 × 10(4) M(-1)). In fact, the results indicate that these complexes can bind to DNA covalently and non-covalently. In order to gain insight of the behavior of a neutral compound, besides the four previously synthesized cationic complexes [Ru(Cl-tpy)(en)Cl][Cl] (1), [Ru(Cl-tpy)(dach)Cl][Cl] (2), [Ru(Cl-tpy)(bpy)Cl][Cl] (3) and [Ru(tpy)Cl3] (P2), a new complex, [Ru(Cl-tpy)(pic)Cl] (4), was used in the biological studies. Their cytotoxicity was investigated against three different tumor cell lines, i.e., A549 (human lung carcinoma cell line), HCT116 (human colon carcinoma cell line), and CT26 (mouse colon carcinoma cell line), by the MTT assay. Complexes 1 and 2 showed higher activity than complexes 3, 4 and P2 against all the selected cell lines. The results on in vitro anticancer activity confirmed that only compounds that hydrolyze the monodentate ligand at a reasonable rate show moderate activity, provided that the chelate ligand is a hydrogen bond donor.


Asunto(s)
Complejos de Coordinación/química , ADN/química , Histidina/química , Rutenio/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Bovinos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , ADN/metabolismo , Etidio/química , Etidio/metabolismo , Histidina/metabolismo , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Ratones , Conformación Molecular , Teoría Cuántica , Espectrofotometría Ultravioleta , Viscosidad , Agua/química
6.
Inorg Chem ; 53(12): 6113-26, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24884156

RESUMEN

With the aim of assessing whether ruthenium(II) compounds with meridional geometry might be utilized as potential antitumor agents, a series of new, water-soluble, monofunctional ruthenium(II) complexes of the general formula mer-[Ru(L3)(N-N)X][Y]n (where L3 = 2,2':6',2″-terpyridine (tpy) or 4'-chloro-2,2':6',2″-terpyridine (Cl-tpy), N-N = 1,2-diaminoethane (en), 1,2-diaminocyclohexane (dach), or 2,2'-bipyridine (bpy); X = Cl or dmso-S; Y = Cl, PF6, or CF3SO3; n = 1 or 2, depending on the nature of X) were synthesized. All complexes were fully characterized by elemental analysis and spectroscopic techniques (IR, UV/visible, and 1D and 2D NMR), and for three of them, i.e., [Ru(Cl-tpy)(bpy)Cl][Cl] (3Cl), [Ru(Cl-tpy)(en)(dmso-S)][Y]2 [Y = PF6 (6PF6), CF3SO3 (6OTf)] and [Ru(Cl-tpy)(bpy)(dmso-S)][CF3SO3]2 (8OTf), the X-ray structure was also determined. The new terpyridine complexes, with the exception of 8, are well soluble in water (>25 mg/mL). (1)H and (31)P NMR spectroscopy studies performed on the three selected complexes [Ru(Cl-tpy)(N-N)Cl](+) [N-N = en (1), dach (2), and bpy (3)] demonstrated that, after hydrolysis of the Cl ligand, they are capable of interacting with guanine derivatives [i.e., 9-methylguanine (9MeG) or guanosine-5'-monophosphate (5'-GMP)] through N7, forming monofunctional adducts with rates and extents that depend strongly on the nature of N-N: 1 ≈ 2 ≫ 3. In addition, compound 1 shows high selectivity toward 5'-GMP compared to adenosine-5'-monophosphate (5'-AMP), in a competition experiment. Quantitative kinetic investigations on 1 and 2 were performed by means of UV/visible spectroscopy. Overall, the complexes with bidentate aliphatic diamines proved to be superior to those with bpy in terms of solubility and reactivity (i.e., release of Cl(-) and capability to bind guanine derivatives). Contrary to the chlorido compounds, the corresponding dmso derivatives proved to be inert (viz., they do not release the monodentate ligand) in aqueous media.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/química , Guanidina/análogos & derivados , Compuestos Organometálicos/química , Rutenio/química , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Adenosina Monofosfato/metabolismo , Antineoplásicos/farmacología , Cristalografía por Rayos X , Guanidina/metabolismo , Guanosina Monofosfato/metabolismo , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Compuestos Organometálicos/farmacología , Rutenio/farmacología , Solubilidad , Agua/química
7.
Dalton Trans ; 41(38): 11608-18, 2012 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-22903512

RESUMEN

Half sandwich Ru(II)-[9]aneS3 complexes ([9]aneS3 = 1,4,7-trithiacyclononane) are being studied for their antiproliferative activity. We investigated here the activation kinetics of three such complexes, namely [Ru([9]aneS3)(en)Cl](PF(6)) (1), [Ru([9]aneS3)(bpy)Cl](PF(6)) (2) and [Ru([9]aneS3)(pic)Cl] (3) (en = 1,2-diaminoethane, pic = picolinate), and their interaction with DNA model bases. The aim of the study was to assess how they are affected by the nature and charge of the chelating ligand. The model reactions of 1-3 with the guanine derivatives 9-methylguanine (9MeG), guanosine (Guo), and guanosine 5'-monophosphate (5'-GMP) were studied by NMR spectroscopy. All reactions lead, although with different rates and to different extents, to the formation of monofunctional adducts with the guanine derivatives N7-bonded to the Ru center. Two products, the complexes [Ru([9]aneS3)(en)(9MeG-N7)](PF(6))(2) (4) and [Ru([9]aneS3)(pic)(9MeG-N7)](PF(6)) (10), were structurally characterized also by X-ray crystallography. The structure of 4 is stabilized by strong intramolecular H-bonding between an NH of en and the carbonyl O6 of 9MeG. The kinetics of aquation and anation of complexes 2 and 3, as well as the kinetics and the mechanism of the reaction of complexes 1-3 with the biologically more relevant 5'-GMP ligand were studied by UV-Vis spectroscopy. The rate of the reaction of 1-3 with 5'-GMP depends on the nature of the chelating ligand rather than on the charge of the complex, decreasing in the order 3≈2 > 1. The measured enthalpies and entropies of activation (ΔH(≠) > 0, ΔS(≠) < 0) support an associative mechanism for the substitution process.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Guanina/análogos & derivados , Rutenio/química , Antineoplásicos/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quelantes/química , Complejos de Coordinación/toxicidad , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Guanina/química , Guanosina/química , Guanosina Monofosfato/química , Humanos , Enlace de Hidrógeno , Cinética , Ligandos , Conformación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...