Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am Surg ; : 31348241269407, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058406

RESUMEN

Background: Despite increasing sub-specialization, general surgeons continue to perform oncologic thoracic surgeries. Our objective was to determine whether general surgery resident participation in thoracic surgery affects surgical quality or oncologic outcomes. We hypothesized that patient outcomes with and without resident participation would be similar. Methods: We retrospectively reviewed the electronic health records of patients with stage 0-IV lung cancer undergoing oncologic pulmonary resection at BLINDED FOR REVIEW during an 11-year period (2012-2022). Patients younger than 18 years or older than 85 years were excluded, as were those who had incomplete follow-up data or were unregistered in our institutional cancer registry. Patients were divided into groups based on whether residents or staff surgeons completed >50% of the critical portions of the operation. We compared 30-day morbidity outcomes, overall survival (OS), and disease-free survival (DFS). Results: Three hundred thirteen patients met inclusion criteria. Demographic and clinical characteristics were similar between groups, as were types of surgical resection and median operative times. A statistical difference was found in the distribution of surgical approach. The odds of morbidity were 65% higher in the Staff group (OR=1.65; 95% CI, 1.007-2.71). Resident participation was not significantly associated with OS or DFS (P =.32 and P =.54, respectively). Discussion: General surgery resident involvement in lung cancer operations is not associated with longer operative times but is associated with a higher likelihood of a thoracotomy. General surgery resident involvement was associated with decreased postoperative morbidity and did not significantly affect OS or DFS.

2.
ACS Chem Biol ; 19(5): 1116-1124, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38695893

RESUMEN

Borosins are ribosomally synthesized and post-translationally modified peptides (RiPPs) containing backbone α-N-methylations. These modifications confer favorable pharmacokinetic properties including increased membrane permeability and resistance to proteolytic degradation. Previous studies have biochemically and bioinformatically explored several borosins, revealing (1) numerous domain architectures and (2) diverse core regions lacking conserved sequence elements. Due to these characteristics, large-scale computational identification of borosin biosynthetic genes remains challenging and often requires additional, time-intensive manual inspection. This work builds upon previous findings and updates the genome-mining tool RODEO to automatically evaluate borosin biosynthetic gene clusters (BGCs) and identify putative precursor peptides. Using the new RODEO module, we provide an updated analysis of borosin BGCs identified in the NCBI database. From our data set, we bioinformatically predict and experimentally characterize a new fused borosin domain architecture, in which the modified natural product core is encoded N-terminal to the methyltransferase domain. Additionally, we demonstrate that a borosin precursor peptide is a native substrate of shewasin A, a reported aspartyl peptidase with no previously identified substrates. Shewasin A requires post-translational modification of the leader peptide for proteolytic maturation, a feature not previously observed in RiPPs. Overall, this work provides a user-friendly and open-access tool for the analysis of borosin BGCs and we demonstrate its utility to uncover additional biosynthetic strategies within the borosin class of RiPPs.


Asunto(s)
Biología Computacional , Procesamiento Proteico-Postraduccional , Biología Computacional/métodos , Familia de Multigenes , Secuencia de Aminoácidos , Péptidos/química , Péptidos/metabolismo
3.
Life (Basel) ; 14(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38792656

RESUMEN

The proposed Mars missions will expose astronauts to long durations of social isolation (SI) and space radiation (SR). These stressors have been shown to alter the brain's macrostructure and microenvironment, including the blood-brain barrier (BBB). Breakdown of the BBB is linked to impaired executive functions and physical deficits, including sensorimotor and neurocognitive impairments. However, the precise mechanisms mediating these effects remain unknown. Additionally, the synergistic effects of combined exposure to SI and SR on the structural integrity of the BBB and brain remain unknown. We assessed the BBB integrity and morphology in the brains of male rats exposed to ground-based analogs of SI and SR. The rats exposed to SR had enlarged lateral ventricles and increased BBB damage associated with a loss of astrocytes and an increased number of leaky vessels. Many deficits observed in SR-treated animals were attenuated by dual exposure to SI (DFS). SI alone did not show BBB damage but did show differences in astrocyte morphology compared to the Controls. Thus, determining how single and combined inflight stressors modulate CNS structural integrity is crucial to fully understand the multiple pathways that could impact astronaut performance and health, including the alterations to the CNS structures and cell viability observed in this study.

4.
Microbiol Spectr ; 12(6): e0351623, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687064

RESUMEN

Recent case reports and epidemiological data suggest that fungal infections represent an underappreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing data set characterizing the upper respiratory microenvironment during COVID-19 and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our previous study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals. Using matched single-cell transcriptomic profiles of these individuals' respiratory mucosa, we identify epithelial immune signatures suggestive of IL17 stimulation and anti-fungal immunity. Further, we observe a significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggest that IL17 stimulation-in part driven by Candida colonization-and blunted interferon signaling represent a common feature of severe COVID-19 infection. IMPORTANCE: In this paper, we present an analysis suggesting that symptomatic and asymptomatic fungal coinfections can impact patient disease progression during COVID-19 hospitalization. By looking into the presence of other pathogens and their effect on the host immune response during COVID-19 hospitalizations, we aim to offer insight into an underestimated scenario, furthering our current knowledge of determinants of severity that could be considered for future diagnostic and intervention strategies.


Asunto(s)
COVID-19 , Coinfección , Células Epiteliales , Interferón Tipo I , Interleucina-17 , SARS-CoV-2 , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/inmunología , COVID-19/inmunología , Coinfección/inmunología , Coinfección/microbiología , Coinfección/virología , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Masculino , SARS-CoV-2/inmunología , Persona de Mediana Edad , Femenino , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Adulto , Mucosa Nasal/inmunología , Mucosa Nasal/microbiología , Anciano , Nasofaringe/microbiología , Candidiasis/inmunología , Candidiasis/microbiología , Micosis/inmunología
5.
Epidemics ; 46: 100739, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211389

RESUMEN

During September and October 2021, a substantial number of Polymerase Chain Reaction (PCR) tests in England processed at a single laboratory were incorrectly reported as negative. We estimate the number of false negative test results issued and investigate the epidemiological impact of this incident. We estimate the number of COVID-19 cases that would have been reported had the sensitivity of the laboratory test procedure not dropped for the period 2 September to 12 October. In addition, by making comparisons between the most affected local areas and comparator populations, we estimate the number of additional infections, cases, hospitalisations and deaths that could have occurred as a result of increased transmission due to false negative test results.We estimate that around 39,000 tests may have been false negatives during this period and, as a direct result of this incident, the most affected areas in the South-West of England could have experienced between 6000 and 34,000 additional reportable cases, with a central estimate of around 24,000 additional reportable cases. Using modelled relationships between key variables, we estimate that this central estimate could have translated to approximately 55,000 additional infections.Each false negative likely led to around 1.5 additional infections. The incident is likely to have had a measurable impact on cases and infections in the affected areas in the South-West of England. IMPACT STATEMENT: These results indicate the significant negative impact of incorrect testing on COVID outcomes; and make a substantial contribution to understanding the impact of testing systems and the need to ensure high accuracy in testing and reporting of results.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Sensibilidad y Especificidad , Prueba de COVID-19 , Inglaterra/epidemiología
6.
bioRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260703

RESUMEN

Borosins are ribosomally synthesized and post-translationally modified peptides containing backbone α- N -methylations. Identification of borosin precursor peptides is difficult because (1) there are no conserved sequence elements among borosin precursor peptides and (2) the biosynthetic gene clusters contain numerous domain architectures and peptide fusions. To tackle this problem, we updated the genome mining tool RODEO to automatically evaluate putative borosin BGCs and identify precursor peptides. Enabled by the new borosin module, we analyzed all borosin BGCs found in available sequence data and assigned precursor peptides to previously orphan borosin methyltransferases. Additionally, we bioinformatically predict and experimentally characterize a new fused borosin domain architecture, in which the modified core is N-terminal to the methyltransferase domain. Finally, we demonstrate that a borosin precursor peptide is the native substrate of shewasin A, a previously characterized pepsin-like aspartic peptidase whose native biological function was unknown.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22281528

RESUMEN

Recent case reports and epidemiological data suggest fungal infections represent an under-appreciated complication among people with severe COVID-19. However, the frequency of fungal colonization in patients with COVID-19 and associations with specific immune responses in the airways remain incompletely defined. We previously generated a single-cell RNA-sequencing (scRNA-seq) dataset characterizing the upper respiratory microenvironment during COVID-19, and mapped the relationship between disease severity and the local behavior of nasal epithelial cells and infiltrating immune cells. Our study, in agreement with findings from related human cohorts, demonstrated that a profound deficiency in host immunity, particularly in type I and type III interferon signaling in the upper respiratory tract, is associated with rapid progression to severe disease and worse clinical outcomes. We have now performed further analysis of this cohort and identified a subset of participants with severe COVID-19 and concurrent detection of Candida species-derived transcripts within samples collected from the nasopharynx and trachea. Here, we present the clinical characteristics of these individuals, including confirmatory diagnostic testing demonstrating elevated serum (1, 3)-{beta}-D-glucan and/or confirmed fungal culture of the predicted pathogen. Using matched single-cell transcriptomic profiles of these individuals respiratory mucosa, we identify epithelial immune signatures suggestive of IL-17 stimulation and anti-fungal immunity. Further, we observe significant expression of anti-fungal inflammatory cascades in the nasal and tracheal epithelium of all participants who went on to develop severe COVID-19, even among participants without detectable genetic material from fungal pathogens. Together, our data suggests that IL-17 stimulation - in part driven by Candida colonization - and blunted type I/III interferon signaling represents a common feature of severe COVID-19 infection.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-431155

RESUMEN

Infection with SARS-CoV-2, the virus that causes COVID-19, can lead to severe lower respiratory illness including pneumonia and acute respiratory distress syndrome, which can result in profound morbidity and mortality. However, many infected individuals are either asymptomatic or have isolated upper respiratory symptoms, which suggests that the upper airways represent the initial site of viral infection, and that some individuals are able to largely constrain viral pathology to the nasal and oropharyngeal tissues. Which cell types in the human nasopharynx are the primary targets of SARS-CoV-2 infection, and how infection influences the cellular organization of the respiratory epithelium remains incompletely understood. Here, we present nasopharyngeal samples from a cohort of 35 individuals with COVID-19, representing a wide spectrum of disease states from ambulatory to critically ill, as well as 23 healthy and intubated patients without COVID-19. Using standard nasopharyngeal swabs, we collected viable cells and performed single-cell RNA-sequencing (scRNA-seq), simultaneously profiling both host and viral RNA. We find that following infection with SARS-CoV-2, the upper respiratory epithelium undergoes massive reorganization: secretory cells diversify and expand, and mature epithelial cells are preferentially lost. Further, we observe evidence for deuterosomal cell and immature ciliated cell expansion, potentially representing active repopulation of lost ciliated cells through coupled secretory cell differentiation. Epithelial cells from participants with mild/moderate COVID-19 show extensive induction of genes associated with anti-viral and type I interferon responses. In contrast, cells from participants with severe lower respiratory symptoms appear globally muted in their anti-viral capacity, despite substantially higher local inflammatory myeloid populations and equivalent nasal viral loads. This suggests an essential role for intrinsic, local epithelial immunity in curbing and constraining viral-induced pathology. Using a custom computational pipeline, we characterized cell-associated SARS-CoV-2 RNA and identified rare cells with RNA intermediates strongly suggestive of active replication. Both within and across individuals, we find remarkable diversity and heterogeneity among SARS-CoV-2 RNA+ host cells, including developing/immature and interferon-responsive ciliated cells, KRT13+ "hillock"-like cells, and unique subsets of secretory, goblet, and squamous cells. Finally, SARS-CoV-2 RNA+ cells, as compared to uninfected bystanders, are enriched for genes involved in susceptibility (e.g., CTSL, TMPRSS2) or response (e.g., MX1, IFITM3, EIF2AK2) to infection. Together, this work defines both protective and detrimental host responses to SARS-CoV-2, determines the direct viral targets of infection, and suggests that failed anti-viral epithelial immunity in the nasal mucosa may underlie the progression to severe COVID-19.

9.
In. White, Kerr L; Frenk, Julio; Ordoñez Carceller, Cosme; Paganini, José Maria; Starfield, Bárbara. Health services research: An anthology. Washington, D.C, Pan Américan Health Organization, 1992. p.627-635, tab. (PAHO. Scientific Públication, 534).
Monografía en Inglés | LILACS | ID: lil-370986
10.
In. White, Kerr L; Frenk, Julio; Ordoñez, Cosme; Paganini, José Maria; Starfield, Bárbara. Investigaciónes sobre servicios de salud: una antología. Washington, D.C, Organización Panamericana de la Salud, 1992. p.695-702, tab. (OPS. Publicación Científica, 534).
Monografía en Español | LILACS | ID: lil-370749
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA