Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
medRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38562868

RESUMEN

Humans experience many influenza infections over their lives, resulting in complex and varied immunological histories. Although experimental and quantitative analyses have improved our understanding of the immunological processes defining an individual's antibody repertoire, how these within-host processes are linked to population-level influenza epidemiology remains unclear. Here, we used a multi-level mathematical model to jointly infer antibody dynamics and individual-level lifetime influenza A/H3N2 infection histories for 1,130 individuals in Guangzhou, China, using 67,683 haemagglutination inhibition (HI) assay measurements against 20 A/H3N2 strains from repeat serum samples collected between 2009 and 2015. These estimated infection histories allowed us to reconstruct historical seasonal influenza patterns and to investigate how influenza incidence varies over time, space and age in this population. We estimated median annual influenza infection rates to be approximately 18% from 1968 to 2015, but with substantial variation between years. 88% of individuals were estimated to have been infected at least once during the study period (2009-2015), and 20% were estimated to have three or more infections in that time. We inferred decreasing infection rates with increasing age, and found that annual attack rates were highly correlated across all locations, regardless of their distance, suggesting that age has a stronger impact than fine-scale spatial effects in determining an individual's antibody profile. Finally, we reconstructed each individual's expected antibody profile over their lifetime and inferred an age-stratified relationship between probability of infection and HI titre. Our analyses show how multi-strain serological panels provide rich information on long term, epidemiological trends, within-host processes and immunity when analyzed using appropriate inference methods, and adds to our understanding of the life course epidemiology of influenza A/H3N2.

2.
Emerg Infect Dis ; 30(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38190760

RESUMEN

To support the ongoing management of viral respiratory diseases while transitioning out of the acute phase of the COVID-19 pandemic, many countries are moving toward an integrated model of surveillance for SARS-CoV-2, influenza virus, and other respiratory pathogens. Although many surveillance approaches catalyzed by the COVID-19 pandemic provide novel epidemiologic insight, continuing them as implemented during the pandemic is unlikely to be feasible for nonemergency surveillance, and many have already been scaled back. Furthermore, given anticipated cocirculation of SARS-CoV-2 and influenza virus, surveillance activities in place before the pandemic require review and adjustment to ensure their ongoing value for public health. In this report, we highlight key challenges for the development of integrated models of surveillance. We discuss the relative strengths and limitations of different surveillance practices and studies as well as their contribution to epidemiologic assessment, forecasting, and public health decision-making.


Asunto(s)
COVID-19 , Virosis , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Pandemias , Salud Pública
3.
Epidemics ; 46: 100742, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227994

RESUMEN

The time-varying reproduction number R(t) measures the number of new infections per infectious individual and is closely correlated with the time series of infection incidence by definition. The timings of actual infections are rarely known, and analysis of epidemics usually relies on time series data for other outcomes such as symptom onset. A common implicit assumption, when estimating R(t) from an epidemic time series, is that R(t) has the same relationship with these downstream outcomes as it does with the time series of incidence. However, this assumption is unlikely to be valid given that most epidemic time series are not perfect proxies of incidence. Rather they represent convolutions of incidence with uncertain delay distributions. Here we define the apparent time-varying reproduction number, RA(t), the reproduction number calculated from a downstream epidemic time series and demonstrate how differences between RA(t) and R(t) depend on the convolution function. The mean of the convolution function sets a time offset between the two signals, whilst the variance of the convolution function introduces a relative distortion between them. We present the convolution functions of epidemic time series that were available during the SARS-CoV-2 pandemic. Infection prevalence, measured by random sampling studies, presents fewer biases than other epidemic time series. Here we show that additionally the mean and variance of its convolution function were similar to that obtained from traditional surveillance based on mass-testing and could be reduced using more frequent testing, or by using stricter thresholds for positivity. Infection prevalence studies continue to be a versatile tool for tracking the temporal trends of R(t), and with additional refinements to their study protocol, will be of even greater utility during any future epidemics or pandemics.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Factores de Tiempo , SARS-CoV-2 , Pandemias
5.
PLoS One ; 18(10): e0286199, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851661

RESUMEN

Since 8th March 2020 up to the time of writing, we have been producing near real-time weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for all countries with evidence of sustained transmission, shared online. We also developed a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a 4-week horizon. Here we present a retrospective evaluation of the forecasts produced between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of the forecasts produced in real-time using relative error, coverage probability, and comparisons with null models. During the 39-week period covered by this study, both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our models shows that simple transmission models calibrated using routine disease surveillance data can reliably capture the epidemic trajectory in multiple countries. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax public health measures.


Asunto(s)
COVID-19 , Epidemias , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , SARS-CoV-2 , Tiempo , Predicción
6.
Emerg Infect Dis ; 29(11): 2292-2297, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877559

RESUMEN

Earlier global detection of novel SARS-CoV-2 variants gives governments more time to respond. However, few countries can implement timely national surveillance, resulting in gaps in monitoring. The United Kingdom implemented large-scale community and hospital surveillance, but experience suggests it might be faster to detect new variants through testing England arrivals for surveillance. We developed simulations of emergence and importation of novel variants with a range of infection hospitalization rates to the United Kingdom. We compared time taken to detect the variant though testing arrivals at England borders, hospital admissions, and the general community. We found that sampling 10%-50% of arrivals at England borders could confer a speed advantage of 3.5-6 weeks over existing community surveillance and 1.5-5 weeks (depending on infection hospitalization rates) over hospital testing. Directing limited global capacity for surveillance to highly connected ports could speed up global detection of novel SARS-CoV-2 variants.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Inglaterra/epidemiología , Reino Unido/epidemiología
7.
Am J Public Health ; 113(11): 1201-1209, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37733993

RESUMEN

Data System. The UK Department of Health and Social Care funded the REal-time Assessment of Community Transmission-2 (REACT-2) study to estimate community prevalence of SARS-CoV-2 IgG (immunoglobulin G) antibodies in England. Data Collection/Processing. We obtained random cross-sectional samples of adults from the National Health Service (NHS) patient list (near-universal coverage). We sent participants a lateral flow immunoassay (LFIA) self-test, and they reported the result online. Overall, 905 991 tests were performed (28.9% response) over 6 rounds of data collection (June 2020-May 2021). Data Analysis/Dissemination. We produced weighted estimates of LFIA test positivity (validated against neutralizing antibodies), adjusted for test performance, at local, regional, and national levels and by age, sex, and ethnic group and area-level deprivation score. In each round, fieldwork occurred over 2 weeks, with results reported to policymakers the following week. We disseminated results as preprints and peer-reviewed journal publications. Public Health Implications. REACT-2 estimated the scale and variation in antibody prevalence over time. Community self-testing and -reporting produced rapid insights into the changing course of the pandemic and the impact of vaccine rollout, with implications for future surveillance. (Am J Public Health. 2023;113(11):1201-1209. https://doi.org/10.2105/AJPH.2023.307381).


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2 , Prevalencia , Estudios Transversales , Medicina Estatal , Anticuerpos Antivirales , Inmunoglobulina G , Inglaterra/epidemiología
8.
Nat Commun ; 14(1): 4957, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587102

RESUMEN

The value of SARS-CoV-2 lateral flow immunoassay (LFIA) tests for estimating individual disease risk is unclear. The REACT-2 study in England, UK, obtained self-administered SARS-CoV-2 LFIA test results from 361,801 adults in January-May 2021. Here, we link to routine data on subsequent hospitalisation (to September 2021), and death (to December 2021). Among those who had received one or more vaccines, a negative LFIA is associated with increased risk of hospitalisation with COVID-19 (HR: 2.73 [95% confidence interval: 1.15,6.48]), death (all-cause) (HR: 1.59, 95% CI:1.07, 2.37), and death with COVID-19 as underlying cause (20.6 [1.83,232]). For people designated at high risk from COVID-19, who had received one or more vaccines, there is an additional risk of all-cause mortality of 1.9 per 1000 for those testing antibody negative compared to positive. However, the LFIA does not provide substantial predictive information over and above that which is available from detailed sociodemographic and health-related variables. Nonetheless, this simple test provides a marker which could be a valuable addition to understanding population and individual-level risk.


Asunto(s)
COVID-19 , Adulto , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales , Inglaterra/epidemiología , Hospitalización , Prueba de COVID-19
9.
PLoS Biol ; 21(5): e3002118, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37228015

RESUMEN

The relationship between prevalence of infection and severe outcomes such as hospitalisation and death changed over the course of the COVID-19 pandemic. Reliable estimates of the infection fatality ratio (IFR) and infection hospitalisation ratio (IHR) along with the time-delay between infection and hospitalisation/death can inform forecasts of the numbers/timing of severe outcomes and allow healthcare services to better prepare for periods of increased demand. The REal-time Assessment of Community Transmission-1 (REACT-1) study estimated swab positivity for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in England approximately monthly from May 2020 to March 2022. Here, we analyse the changing relationship between prevalence of swab positivity and the IFR and IHR over this period in England, using publicly available data for the daily number of deaths and hospitalisations, REACT-1 swab positivity data, time-delay models, and Bayesian P-spline models. We analyse data for all age groups together, as well as in 2 subgroups: those aged 65 and over and those aged 64 and under. Additionally, we analysed the relationship between swab positivity and daily case numbers to estimate the case ascertainment rate of England's mass testing programme. During 2020, we estimated the IFR to be 0.67% and the IHR to be 2.6%. By late 2021/early 2022, the IFR and IHR had both decreased to 0.097% and 0.76%, respectively. The average case ascertainment rate over the entire duration of the study was estimated to be 36.1%, but there was some significant variation in continuous estimates of the case ascertainment rate. Continuous estimates of the IFR and IHR of the virus were observed to increase during the periods of Alpha and Delta's emergence. During periods of vaccination rollout, and the emergence of the Omicron variant, the IFR and IHR decreased. During 2020, we estimated a time-lag of 19 days between hospitalisation and swab positivity, and 26 days between deaths and swab positivity. By late 2021/early 2022, these time-lags had decreased to 7 days for hospitalisations and 18 days for deaths. Even though many populations have high levels of immunity to SARS-CoV-2 from vaccination and natural infection, waning of immunity and variant emergence will continue to be an upwards pressure on the IHR and IFR. As investments in community surveillance of SARS-CoV-2 infection are scaled back, alternative methods are required to accurately track the ever-changing relationship between infection, hospitalisation, and death and hence provide vital information for healthcare provision and utilisation.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Teorema de Bayes , Pandemias , Inglaterra/epidemiología , Hospitalización
10.
Arch Dis Child ; 108(7): e12, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36863848

RESUMEN

OBJECTIVE: To estimate the prevalence of, and associated risk factors for, persistent symptoms post-COVID-19 among children aged 5-17 years in England. DESIGN: Serial cross-sectional study. SETTING: Rounds 10-19 (March 2021 to March 2022) of the REal-time Assessment of Community Transmission-1 study (monthly cross-sectional surveys of random samples of the population in England). STUDY POPULATION: Children aged 5-17 years in the community. PREDICTORS: Age, sex, ethnicity, presence of a pre-existing health condition, index of multiple deprivation, COVID-19 vaccination status and dominant UK circulating SARS-CoV-2 variant at time of symptom onset. MAIN OUTCOME MEASURES: Prevalence of persistent symptoms, reported as those lasting ≥3 months post-COVID-19. RESULTS: Overall, 4.4% (95% CI 3.7 to 5.1) of 3173 5-11 year-olds and 13.3% (95% CI 12.5 to 14.1) of 6886 12-17 year-olds with prior symptomatic infection reported at least one symptom lasting ≥3 months post-COVID-19, of whom 13.5% (95% CI 8.4 to 20.9) and 10.9% (95% CI 9.0 to 13.2), respectively, reported their ability to carry out day-to-day activities was reduced 'a lot' due to their symptoms. The most common symptoms among participants with persistent symptoms were persistent coughing (27.4%) and headaches (25.4%) in children aged 5-11 years and loss or change of sense of smell (52.2%) and taste (40.7%) in participants aged 12-17 years. Higher age and having a pre-existing health condition were associated with higher odds of reporting persistent symptoms. CONCLUSIONS: One in 23 5-11 year-olds and one in eight 12-17 year-olds post-COVID-19 report persistent symptoms lasting ≥3 months, of which one in nine report a large impact on performing day-to-day activities.


Asunto(s)
COVID-19 , Humanos , Niño , Adolescente , COVID-19/epidemiología , SARS-CoV-2 , Vacunas contra la COVID-19 , Estudios Transversales , Inglaterra/epidemiología
11.
Am J Public Health ; 113(5): 545-554, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893367

RESUMEN

Data System. The REal-time Assessment of Community Transmission-1 (REACT-1) Study was funded by the Department of Health and Social Care in England to provide reliable and timely estimates of prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection over time, by person and place. Data Collection/Processing. The study team (researchers from Imperial College London and its logistics partner Ipsos) wrote to named individuals aged 5 years and older in random cross-sections of the population of England, using the National Health Service list of patients registered with a general practitioner (near-universal coverage) as a sampling frame. We collected data over 2 to 3 weeks approximately every month across 19 rounds of data collection from May 1, 2020, to March 31, 2022. Data Analysis/Dissemination. We have disseminated the data and study materials widely via the study Web site, preprints, publications in peer-reviewed journals, and the media. We make available data tabulations, suitably anonymized to protect participant confidentiality, on request to the study's data access committee. Public Health Implications. The study provided inter alia real-time data on SARS-CoV-2 prevalence over time, by area, and by sociodemographic variables; estimates of vaccine effectiveness; and symptom profiles, and detected emergence of new variants based on viral genome sequencing. (Am J Public Health. 2023;113(5):545-554. https://doi.org/10.2105/AJPH.2023.307230).


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inglaterra/epidemiología , Salud Pública , Medicina Estatal , Estudios Transversales
13.
Microb Genom ; 9(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36745545

RESUMEN

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , SARS-CoV-2/genética , Filogenia , Inglaterra/epidemiología
14.
Clin Infect Dis ; 76(4): 658-666, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35913410

RESUMEN

BACKGROUND: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based electrochemiluminescence immunoassay (ECLIA) and live virus neutralization. METHODS: In July 2021, 3758 participants performed, at home, a self-administered Fortress LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of immunoglobulin G (IgG) antibodies using the Roche Elecsys® Anti-SARS-CoV-2 ECLIA. We compared the self-reported LFIA result to the quantitative ECLIA and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralization. RESULTS: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on ECLIA (using the manufacturer reference standard threshold for positivity of 0.8 U mL-1). Live virus neutralization was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% confidence interval [CI]: 71.8, 84.6), 142/155 (91.6%; 95% CI: 86.1, 95.5) with ALFA, and 169 (100%; 95% CI: 97.8, 100.0) with ECLIA. There were 81 samples with no detectable virus neutralization; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI: 46.5, 68.9), 34/75 (45.3%; 95% CI: 33.8, 57.3) with ALFA, and 0/81 (0%; 95% CI: 0, 4.5) with ECLIA. CONCLUSIONS: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ECLIA with virus neutralization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Autoevaluación , Sensibilidad y Especificidad , Anticuerpos Antivirales , Inmunoensayo/métodos
15.
Mil Med ; 188(1-2): 311-315, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34632512

RESUMEN

INTRODUCTION: The CoronaVirus Disease 2019 (COVID-19) pandemic remains a formidable threat to populations around the world. The U.S. Military, in particular, represents a unique and distinguishable subset of the population, primarily due to the age and gender of active duty personnel. Current investigations have focused on health outcome forecasts for civilian populations, making them of limited value for military planning. MATERIALS AND METHODS: We have developed and applied an age-structured susceptible, exposed, infectious, recovered, or dead compartmental model for both civilian and military populations, driven by estimates of the time-dependent reproduction number, R(t), which can be both fit to available data and also forecast future cases, intensive care unit (ICU) patients, and deaths. RESULTS: We show that the expected health outcomes for active duty military populations are substantially different than for civilian populations of the same size. Specifically, while the number of cases is not expected to differ dramatically, severity, both in terms of ICU burdens and deaths, is substantially lower. CONCLUSIONS: Our results confirm that the burden placed on military health centers will be substantially lower than that for equivalent-sized civilian populations. More practically, the tool we have developed to investigate this (https://q.predsci.com/covid19/) can be used by military health planners to estimate the resources needed in particular locations based on current estimates of the transmission profiles of COVID-19 within the surrounding civilian population in which the military installation is embedded. As this tool continues to be developed, it can be used to assess the likely impact of different intervention strategies, as well as vaccine policies; both for the current pandemic as well as future ones.


Asunto(s)
COVID-19 , Personal Militar , Humanos , COVID-19/epidemiología
16.
Elife ; 112022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36458815

RESUMEN

Background: Over a life course, human adaptive immunity to antigenically mutable pathogens exhibits competitive and facilitative interactions. We hypothesize that such interactions may lead to cyclic dynamics in immune responses over a lifetime. Methods: To investigate the cyclic behavior, we analyzed hemagglutination inhibition titers against 21 historical influenza A(H3N2) strains spanning 47 years from a cohort in Guangzhou, China, and applied Fourier spectrum analysis. To investigate possible biological mechanisms, we simulated individual antibody profiles encompassing known feedbacks and interactions due to generally recognized immunological mechanisms. Results: We demonstrated a long-term periodicity (about 24 years) in individual antibody responses. The reported cycles were robust to analytic and sampling approaches. Simulations suggested that individual-level cross-reaction between antigenically similar strains likely explains the reported cycle. We showed that the reported cycles are predictable at both individual and birth cohort level and that cohorts show a diversity of phases of these cycles. Phase of cycle was associated with the risk of seroconversion to circulating strains, after accounting for age and pre-existing titers of the circulating strains. Conclusions: Our findings reveal the existence of long-term periodicities in individual antibody responses to A(H3N2). We hypothesize that these cycles are driven by preexisting antibody responses blunting responses to antigenically similar pathogens (by preventing infection and/or robust antibody responses upon infection), leading to reductions in antigen-specific responses over time until individual's increasing risk leads to an infection with an antigenically distant enough virus to generate a robust immune response. These findings could help disentangle cohort effects from individual-level exposure histories, improve our understanding of observed heterogeneous antibody responses to immunizations, and inform targeted vaccine strategy. Funding: This study was supported by grants from the NIH R56AG048075 (DATC, JL), NIH R01AI114703 (DATC, BY), the Wellcome Trust 200861/Z/16/Z (SR), and 200187/Z/15/Z (SR). This work was also supported by research grants from Guangdong Government HZQB-KCZYZ-2021014 and 2019B121205009 (YG and HZ). DATC, JMR and SR acknowledge support from the National Institutes of Health Fogarty Institute (R01TW0008246). JMR acknowledges support from the Medical Research Council (MR/S004793/1) and the Engineering and Physical Sciences Research Council (EP/N014499/1). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Subtipo H3N2 del Virus de la Influenza A , Formación de Anticuerpos , Acontecimientos que Cambian la Vida , Anticuerpos Antivirales
17.
PLoS Comput Biol ; 18(11): e1010724, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36417468

RESUMEN

BACKGROUND: Following rapidly rising COVID-19 case numbers, England entered a national lockdown on 6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards. AIM: We characterise how the lockdown and subsequent easing of restrictions affected trends in SARS-CoV-2 infection prevalence. METHODS: On average, risk of infection is proportional to infection prevalence. The REal-time Assessment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of over 98,000 people every round (rounds approximately monthly) that estimates infection prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-varying reproduction number (Rt) nationally, regionally and by age group from round 8 (beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a comparator, a separate segmented-exponential model was used to quantify the impact on Rt of each relaxation of restrictions. RESULTS: Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until 13 May when it reached a minimum of 0.09%, before increasing until the end of the study to 0.76%. Following the first easing of restrictions, which included schools reopening, the reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%, 53%) at the second easing of restrictions, which was timed to match the Easter school holidays. Following further relaxations of restrictions, the observed Rt increased steadily, though the increase due to these restrictions being relaxed was offset by the effects of vaccination and also affected by the rapid rise of Delta. There was a high degree of synchrony in the temporal patterns of prevalence between regions and age groups. CONCLUSION: High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown was effective at reducing risk of infection with school holidays/closures playing a significant part.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Estudios Transversales , Teorema de Bayes , Control de Enfermedades Transmisibles , SARS-CoV-2
18.
Comput Struct Biotechnol J ; 20: 4052-4059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935805

RESUMEN

Introduction: Two years into the coronavirus 2019 (COVID-19) pandemic, populations with less built-up immunity continued to devise ways to optimize social distancing measures (SDMs) relaxation levels for outbreaks triggered by SARS-CoV-2 and its variants to resume minimal economics activities while avoiding hospital system collapse. Method: An age-stratified compartmental model featuring social mixing patterns was first fitted the incidence data in second wave in Hong Kong. Hypothetical scenario analysis was conducted by varying population mobility and vaccination coverages (VCs) to predict the number of hospital and intensive-care unit admissions in outbreaks initiated by ancestral strain and its variants (Alpha, Beta, Gamma, Delta and Omicron). Scenarios were "unsustainable" if either of admissions was larger than the maximum of its occupancy. Results: At VC of 65%, scenarios of full SDMs relaxation (mean daily social encounters prior to COVID-19 pandemic = 14.1 contacts) for outbreaks triggered by ancestral strain, Alpha and Beta were sustainable. Restricting levels of SDMs was required such that the optimal population mobility had to be reduced to 0.9, 0.65 and 0.37 for Gamma, Delta and Omicron associated outbreaks respectively. VC improvement from 65% to 75% and 95% allowed complete SDMs relaxation in Gamma-, and Delta-driven epidemic respectively. However, this was not supported for Omicron-triggered epidemic. Discussion: To seek a path to normality, speedy vaccine and booster distribution to the majority across all age groups is the first step. Gradual or complete SDMs lift could be considered if the hybrid immunity could be achieved due to high vaccination coverage and natural infection rate among vaccinated or the COVID-19 case fatality rate could be reduced similar to that for seasonal influenza to secure hospital system sustainability.

19.
R Soc Open Sci ; 9(8): 211746, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35958089

RESUMEN

Background. Even with good progress on vaccination, SARS-CoV-2 infections in the UK may continue to impose a high burden of disease and therefore pose substantial challenges for health policy decision makers. Stringent government-mandated physical distancing measures (lockdown) have been demonstrated to be epidemiologically effective, but can have both positive and negative economic consequences. The duration and frequency of any intervention policy could, in theory, be optimized to maximize economic benefits while achieving substantial reductions in disease. Methods. Here, we use a pre-existing SARS-CoV-2 transmission model to assess the health and economic implications of different strengths of control through time in order to identify optimal approaches to non-pharmaceutical intervention stringency in the UK, considering the role of vaccination in reducing the need for future physical distancing measures. The model is calibrated to the COVID-19 epidemic in England and we carry out retrospective analysis of the optimal timing of precautionary breaks in 2020 and the optimal relaxation policy from the January 2021 lockdown, considering the willingness to pay (WTP) for health improvement. Results. We find that the precise timing and intensity of interventions is highly dependent upon the objective of control. As intervention measures are relaxed, we predict a resurgence in cases, but the optimal intervention policy can be established dependent upon the WTP per quality adjusted life year loss avoided. Our results show that establishing an optimal level of control can result in a reduction in net monetary loss of billions of pounds, dependent upon the precise WTP value. Conclusion. It is vital, as the UK emerges from lockdown, but continues to face an on-going pandemic, to accurately establish the overall health and economic costs when making policy decisions. We demonstrate how some of these can be quantified, employing mechanistic infectious disease transmission models to establish optimal levels of control for the ongoing COVID-19 pandemic.

20.
PLoS Comput Biol ; 18(8): e1010375, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35969627

RESUMEN

To define appropriate planning scenarios for future pandemics of respiratory pathogens, it is important to understand the initial transmission dynamics of COVID-19 during 2020. Here, we fit an age-stratified compartmental model with a flexible underlying transmission term to daily COVID-19 death data from states in the contiguous U.S. and to national and sub-national data from around the world. The daily death data of the first months of the COVID-19 pandemic was qualitatively categorized into one of four main profile types: "spring single-peak", "summer single-peak", "spring/summer two-peak" and "broad with shoulder". We estimated a reproduction number R as a function of calendar time tc and as a function of time since the first death reported in that population (local pandemic time, tp). Contrary to the diversity of categories and range of magnitudes in death incidence profiles, the R(tp) profiles were much more homogeneous. We found that in both the contiguous U.S. and globally, the initial value of both R(tc) and R(tp) was substantial: at or above two. However, during the early months, pandemic time R(tp) decreased exponentially to a value that hovered around one. This decrease was accompanied by a reduction in the variance of R(tp). For calendar time R(tc), the decrease in magnitude was slower and non-exponential, with a smaller reduction in variance. Intriguingly, similar trends of exponential decrease and reduced variance were not observed in raw death data. Our findings suggest that the combination of specific government responses and spontaneous changes in behaviour ensured that transmissibility dropped, rather than remaining constant, during the initial phases of a pandemic. Future pandemic planning scenarios should include models that assume similar decreases in transmissibility, which lead to longer epidemics with lower peaks when compared with models based on constant transmissibility.


Asunto(s)
COVID-19 , Pandemias , COVID-19/epidemiología , Predicción , Gobierno , Humanos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...