Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067931

RESUMEN

As IoT services become more active, the density of IoT devices is increasing, and massive connectivity technology is needed to support numerous devices simultaneously. In addition, IoT devices are often battery-powered, and during random access, it is necessary to reduce the power consumption to extend the lifetime of the devices. In particular, devices with poor channels need to send at a very low transmission rate through a large number of repetitions, and longer packet lengths can increase the probability of collisions, increasing the power consumption while shortening the lifetime of the IoT system. Dividing devices into groups based on the number of repetitions and allocating different resources to each group can reduce collisions for bad-channel devices, but it can be difficult to support large connections, due to the inefficient use of resources. This paper proposes schemes to reduce the collision probability of bad-channel devices while allowing IoT devices to use shared resources, instead of dividing resources by groups. There are two versions of the proposed schemes. The first method reduces collisions by delaying the response of a bad-channel device, and in the meantime, eliminating interference from other devices, assuming that the bad-channel device is not sensitive to delay. Instead of checking the response, and then, performing a random backoff when no acknowledgement packet is received, the second proposed method reverses the order of response checking and random backoff, that is, it first performs a random backoff, and then, checks the response to decide whether to retransmit. The proposed method can increase the lifetime of the IoT system by reducing the collision probability of a bad-channel device, without degrading the performance of other devices.

2.
Sensors (Basel) ; 21(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673210

RESUMEN

The 3GPP standardized the physical layer specification in 5G New Radio to support enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC) coexistence in usage scenarios including aerial vehicles (AVs). Dynamic multiplexing of URLLC traffic was standardized to increase the outage capacity. DM allocates a fully overlapped bandwidth part (BWP) of eMBB and URLLC AVs to perform the immediate scheduling of URLLC traffic by puncturing ongoing eMBB traffic. However, DM often suffers from a significant frame error incurred by puncturing. Meanwhile, BWP can be sliced orthogonally for eMBB and URLLC AVs, possibly preventing overdimensioning the resources depending on the eMBB and URLLC traffic loads. In this paper, we propose a dynamic BWP allocation scheme that switches between two multiplexing methods, dynamic multiplexing (DM) and orthogonal slicing (OS), so as to minimize an impact of uRLLC traffic on eMBB traffic. To implement efficient BWP allocation, the capacity region is analyzed by considering the effect of physical layer parameters, such as modulation and coding scheme (MCS) levels and code block group size on DM and OS. OS is effective for improving the eMBB throughput under a URLLC latency constraint for deterministic and predictable URLLC traffic, whereas DM has limited error-correcting capability against the URLLC's puncturing effect. The relative MCS level of eMBB and URLLC is critical in determining the eMBB traffic tolerance against puncturing. Identifying the performance tradeoff between DM and OS, the tolerance level is quantified by a URLLC load threshold. It is given in an approximate closed form, which is an essential reference for selecting DM over OS, enabling dynamic BWP allocation for the URLLC AV.

3.
Sensors (Basel) ; 22(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35009573

RESUMEN

This paper proposes a new duty-cycle-based protocol for transmitting emergent data with high priority and low latency in a sensor network environment. To reduce power consumption, the duty cycle protocol is divided into a listen section and a sleep section, and data can only be received when the receiving node is in the listen section. In this paper, high-priority transmission preempts low-priority transmission by distinguishing between high-priority preamble and low-priority preamble. However, even when a high priority transmission preempts a low priority transmission such that the high priority transmission is received first, if the sleep period is very long, the delay may be large. To solve this problem, the high priority short preamble and high priority data reduce receiver sensitivity and increase coverage through repeated transmission. If there are several receiving nodes within a wide coverage, the receiving node that wakes up first can receive the transmission, thus reducing the delay. The delay can also be further reduced by alternately reducing the sleep cycle of one node among the receiving nodes that can receive it. This paper shows that emergent data can be transmitted effectively and reliably by reducing the delay of high-priority data to a minimum through the use of preemption, coverage extension, and an asymmetric sleep cycle.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología Inalámbrica , Algoritmos , Técnicas Histológicas , Sueño
4.
Sensors (Basel) ; 19(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893861

RESUMEN

Device-to-device (D2D) communication is a technique for direct communication between devices without going through a base station or other infrastructure. D2D communication technology has the advantages of improving spectrum efficiency and reducing transmission delay and transmission power. In D2D communication systems, orthogonal frequency-division multiple access (OFDMA) is widely used to maintain similarities with cellular communication systems and to secure transmission distance. OFDMA allows flexible and efficient use of frequency resources by allocating sub-channels independent to each user. In this paper, we consider a D2D overlay system that uses different sub-channels for cellular and D2D communications. In theory, the signals on different sub-channels of an OFDMA system are orthogonal and not interfered with each other. However, in a D2D communication system, which operates in a distributed manner, there is non-negligible interference from other sub-channels because of in-band emissions. In this paper, we address the performance degradation resulting from the interference from other sub-channels for OFDMA-based D2D group-casting systems. We consider three different scenarios of D2D relay, and we find the relay position that minimizes the outage probability. The simulation and analytical results show that the optimal location of a relay can be considerably different according to the source location and the target scenario.

5.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795604

RESUMEN

One of the key requirements for next generation wireless or cellular communication systems is to efficiently support a large number of connections for Internet of Things (IoT) applications, and uplink non-orthogonal multiple access (NOMA) schemes can be used for this purpose. In uplink NOMA systems, pilot symbols, as well as data symbols can be superimposed onto shared resources. The error rate performance can be severely degraded due to channel estimation errors, especially when the number of superimposed packets is large. In this paper, we discuss uplink NOMA schemes with channel estimation errors, assuming that quadrature phase shift keying (QPSK) modulation is used. When pilot signals are superimposed onto the shared resources and a large number of devices perform random accesses concurrently to a single resource of the base station, the channels might not be accurately estimated even in high SNR environments. In this paper, we propose an uplink NOMA scheme, which can alleviate the performance degradation due to channel estimation errors.

6.
ScientificWorldJournal ; 2014: 625421, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24892062

RESUMEN

The performance of opportunistic beamforming might be degraded if the number of users is small. This paper proposes an adaptive opportunistic beamforming technique for orthogonal frequency division multiple access systems, which can produce good results even with a small number of users. This paper also proposes a modified proportional fairness scheduling algorithm, which can further improve the performance of the proposed opportunistic beamforming technique.


Asunto(s)
Comunicación , Tecnología Inalámbrica , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...