Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioorg Med Chem ; 94: 117468, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37696205

RESUMEN

Malaria, one of the oldest parasitic diseases, remains a global health threat, and the increasing resistance of the malaria parasite to current antimalarials is forcing the discovery of new, effective drugs. Harmicines, hybrid compounds in which harmine/ß-carboline alkaloids and cinnamic acid derivatives are linked via an amide bond or a triazole ring, represent new antiplasmodial agents. In this work, we used a multiple linear regression technique to build a linear quantitative structure-activity relationship (QSAR) model, based on a group of 40 previously prepared amide-type (AT) harmicines and their antiplasmodial activities against erythrocytic stage of chloroquine-sensitive strain of P. falciparum (Pf3D7). After analysing the QSAR model, new harmicines were designed and synthesized: six amide-type, eleven carbamate-type and two ureido-type harmicines at the N-9 position of the ß-carboline core. Subsequently, we evaluated the antiplasmodial activity of the new harmicines against the erythrocytic and hepatic stages of the Plasmodium life cycle in vitro and their antiproliferative activity against HepG2 cells. UT harmicine (E)-1-(2-(7-methoxy-1-methyl-9H-pyrido[3,4-b]indol-9-yl)ethyl)-3-(3-(3-(trifluoromethyl)phenyl)allyl)urea at the N-9 position of the ß-carboline ring exhibited pronounced antiplasmodial activity against both the erythrocytic and the hepatic stages of the Plasmodium life cycle, accompanied by good selectivity towards Plasmodium.

2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901918

RESUMEN

This study demonstrates that sterigmatocystin (STC) interacts non-covalently with various cyclodextrins (CDs), showing the highest binding affinity for sugammadex (a γ-CD derivative) and γ-CD, and an almost order of magnitude lower affinity for ß-CD. This difference in affinity was studied using molecular modelling and fluorescence spectroscopy, which demonstrated a better insertion of STC into larger CDs. In parallel, we showed that STC binds to human serum albumin (HSA) (a blood protein known for its role as a transporter of small molecules) with an almost two order of magnitude lower affinity compared to sugammadex and γ-CD. Competitive fluorescence experiments clearly demonstrated an efficient displacement of STC from the STC-HSA complex by cyclodextrins. These results are a proof-of-concept that CDs can be used to complex STC and related mycotoxins. Similarly, as sugammadex extracts neuromuscular relaxants (e.g., rocuronium and vecuronium) from blood and blocks their bioactivity, it could also be used as first aid upon acute intoxication to encapsulate a larger part of the STC mycotoxin from serum albumin.


Asunto(s)
Ciclodextrinas , Humanos , Ciclodextrinas/química , Sugammadex , Esterigmatocistina , Albúmina Sérica , Rocuronio , Albúmina Sérica Humana
3.
J Biomol Struct Dyn ; 41(23): 13963-13976, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36762693

RESUMEN

There is an urgent need to discover and develop novel drugs to combat Mycobacterium tuberculosis, the causative agent of tuberculosis (TB) in humans. Alkaloids have been shown to have wide-ranging therapeutic application and could be ideal candidates for drug development, and research is underway to develop new anti-tubercular drugs from natural sources. In this regard, the current research deals with finding novel lead compounds from the Withania somnifera (WS) plant. Broad health benefits of WS are due to the presence of diverse chemical constituents which include anaferine and anahygrine and which belong to the alkaloid family. In the present study, these two compounds have been theoretically studied to understand their electronic properties using the density functional theory (DFT) at the B3LYP/6-311 + G (d,p) level. HOMO and LUMO properties and molecular electrostatic potential (MEP) surface were calculated. Further, to understand the mechanism of action of these compounds and to identify their putative drug target, molecular docking and dynamics studies were employed against Mycobacterium tuberculosis dihydrofolate reductase (DHFR). It was determined that NADP+ affects stability of the complexes by reducing fluctuations of residues 14-23 and 117-126. It was also found that Ile5 and Gln28 play an important role in complexation. Electron density analysis (using the AlteQ method) of the intermolecular region, analyzing both the anaferin-NADP+ and anahygrin-NADP+ complexes showed that anaferin and anahygrin complexes are more stable in the presence of NADP+. It has been established that in most intermolecular contacts the contribution of the ligand to the electron density is greater than that of NADP+. The present study thus provides an excellent way to analyze the effect of anaferine and anahygrine in essential processes of M. tuberculosis.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Alcaloides , Antagonistas del Ácido Fólico , Mycobacterium tuberculosis , Tuberculosis , Withania , Humanos , Antagonistas del Ácido Fólico/farmacología , Tetrahidrofolato Deshidrogenasa/química , Simulación del Acoplamiento Molecular , NADP , Alcaloides/farmacología
4.
J Biomol Struct Dyn ; 41(21): 12142-12156, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36629044

RESUMEN

Molecular docking is the most popular and widely used method for identifying novel molecules against a target of interest. However, docking procedures and their validation are still under intense development. In the present investigation, we evaluate a quantum free-orbital AlteQ method for evaluating docking complexes generated by taking EGFR complexes as an example. The AlteQ method calculates the electron density using Slater's type atomic contributions in the interspace between the receptor and the ligand. Since the interactions are determined by the overlap of electron clouds, they follow the complementarity principle, and an equation can be obtained that describes these interactions. The AlteQ method evaluates the quality of the interaction between the receptor and the ligand, how complementary the interactions are, and due to this, it is used to reject less realistic structures obtained by docking methods. Here, three different equations were used to determine the quality of the interactions in experimental complexes and docked complexes obtained using AutoDock Vina and AutoDock 4.2.6.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Simulación del Acoplamiento Molecular , Ligandos
5.
Molecules ; 27(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956838

RESUMEN

Quorum sensing (QS) is a bacterial communication using signal molecules, by which they sense population density of their own species, leading to group behavior such as biofilm formation and virulence. Autoinducer-2 (AI2) is a QS signal molecule universally used by both gram-positive and gram-negative bacteria. Inhibition of QS mediated by AI2 is important for various practical applications, including prevention of gum-disease caused by biofilm formation of oral bacteria. In this research, molecular docking and molecular dynamics (MD) simulations were performed for molecules that are chemically similar to known AI2 inhibitors that might have a potential to be quorum sensing inhibitors. The molecules that form stable complexes with the AI2 receptor protein were found, suggesting that they could be developed as a novel AI2 inhibitors after further in vitro validation. The result suggests that combination of ligand-based drug design and computational methods such as MD simulation, and experimental verification, may lead to development of novel AI inhibitor, with a broad range of practical applications.


Asunto(s)
Antibacterianos , Percepción de Quorum , Antibacterianos/farmacología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Simulación del Acoplamiento Molecular
6.
PeerJ ; 10: e13374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35673392

RESUMEN

Exploring potent herbal medicine candidates is a promising strategy for combating a pandemic in the present global health crisis. In Ayurveda (a traditional medicine system in India), Withania somnifera (WS) is one of the most important herbs and it has been used for millennia as Rasayana (a type of juice) for its wide-ranging health benefits. WS phytocompounds display a broad spectrum of biological activities (such as antioxidant, anticancer and antimicrobial) modulate detoxifying enzymes, and enhance immunity. Inspired by the numerous biological actions of WS phytocompounds, the present investigation explored the potential of the WS phytocompounds against the SARS-CoV-2 main protease (3CLpro). We selected 11 specific withanolide compounds, such as withaphysalin, withasomniferol, and withafastuosin, through manual literature curation against 3CLpro. A molecular similarity analysis showed their similarity with compounds that have an established inhibitory activity against the SARS-CoV-2. In silico molecular docking and molecular dynamics simulations elucidated withasomniferol C (WS11) as a potential candidate against SARS-CoV-2 3CLpro. Additionally, the present work also presents a new method of validating docking poses using the AlteQ method.


Asunto(s)
COVID-19 , Withania , SARS-CoV-2 , Simulación del Acoplamiento Molecular
7.
Antibiotics (Basel) ; 11(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453242

RESUMEN

Followed by a buildup of its phytochemical profile, Erodium cicutarium is being subjected to antimicrobial investigation guided with its ethnobotanical use. The results of performed in vitro screening on Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans strains, show that E. cicutarium has antimicrobial activity, with a particular emphasis on clinical S. aureus strains-both the methicillin sensitive (MSSA) and the methicillin resistant (MRSA) S. aureus. Experimental design consisted of general methods (the serial microdilution broth assay and the agar well diffusion assay), as well as observing bactericidal/bacteriostatic activity through time (the "time-kill" assay), investigating the effect on cell wall integrity and biofilm formation, and modulation of bacterial hemolysis. Observed antibacterial activity from above-described methods led to further activity-guided fractionation of water and methanol extracts using bioautography coupled with UHPLC-LTQ OrbiTrap MS4. It was determined that active fractions are predominantly formed by gallic acid derivatives and flavonol glycosides. Among the most active phytochemicals, galloyl-shikimic acid was identified as the most abundant compound. These results point to a direct connection between galloyl-shikimic acid and the observed E. cicutarium antibacterial activity, and open several new research approaches for future investigation.

8.
Comput Struct Biotechnol J ; 20: 1254-1263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35228857

RESUMEN

Although COVID-19 has been primarily associated with pneumonia, recent data show that its causative agent, the SARS-CoV-2 coronavirus, can infect many vital organs beyond the lungs, including the heart, kidneys and the brain. The literature agrees that COVID-19 is likely to have long-term mental health effects on infected individuals, which signifies a need to understand the role of the virus in the pathophysiology of brain disorders that is currently unknown and widely debated. Our docking and molecular dynamics simulations show that the affinity of the spike protein from the wild type (WT) and the South African B.1.351 (SA) variant towards MAO enzymes is comparable to that for its ACE2 receptor. This allows for the WT/SA⋅⋅⋅MAO complex formation, which changes MAO affinities for their neurotransmitter substrates, thereby impacting their metabolic conversion and misbalancing their levels. Knowing that this fine regulation is strongly linked with the etiology of various brain pathologies, these results are the first to highlight the possibility that the interference with the brain MAO catalytic activity is responsible for the increased neurodegenerative illnesses following a COVID-19 infection, thus placing a neurobiological link between these two conditions in the spotlight. Since the obtained insight suggests that a more contagious SA variant causes even larger disturbances, and with new and more problematic strains likely emerging in the near future, we firmly advise that the presented prospect of the SARS-CoV-2 induced neurological complications should not be ignored, but rather requires further clinical investigations to achieve an early diagnosis and timely therapeutic interventions.

9.
J Biomol Struct Dyn ; 40(19): 9347-9360, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34018907

RESUMEN

The SARS-CoV-2 3CL protease (3CLpro) shows a high similarity with 3CL proteases of other beta-coronaviruses, such as SARS and MERS. It is the main enzyme involved in generating various non-structural proteins that are important for viral replication and is one of the most important proteins responsible for SARS-CoV-2 virulence. In this study, we have conducted an ensemble docking of molecules from the DrugBank database using both the crystallographic structure of the SARS-CoV-2 3CLpro, as well as five conformations obtained after performing a cluster analysis of a 300 ns molecular dynamics (MD) simulation. This procedure elucidated the inappropriateness of the active site for non-covalent inhibitors, but it has also shown that there exists an additional, more favorable, allosteric binding site, which could be a better target for non-covalent inhibitors, as it could prevent dimerization and activation of SARS-CoV-2 3CLpro. Two such examples are radotinib and nilotinib, tyrosine kinase inhibitors already in use for treatment of leukemia and which binding to the newly found allosteric binding site was also confirmed using MD simulations. Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , Humanos , Sitio Alostérico , Inhibidores de Proteasas/farmacología , Simulación de Dinámica Molecular , SARS-CoV-2 , Péptido Hidrolasas , Endopeptidasas , Simulación del Acoplamiento Molecular
10.
J Biomol Struct Dyn ; 40(6): 2701-2714, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33146070

RESUMEN

SARS-CoV-2 has become a pandemic causing a serious global health concern. The absence of effective drugs for treatment of the disease has caused its rapid spread on a global scale. Similarly to the SARS-CoV, the SARS-CoV-2 is also involved in a complex interplay with the host cells. This infection is characterized by a diffused alveolar damage consistent with the Acute Respiratory Disease Syndrome (ARDS). To explore the complex mechanisms of the disease at the system level, we used a network medicine tools approach. The protein-protein interactions (PPIs) between the SARS-CoV and the associated human cell proteins are crucial for the viral pathogenesis. Since the cellular entry of SARS-CoV-2 is accomplished by binding of the spike glycoprotein binding domain (RBD) to the human angiotensin-converting enzyme 2 (hACE2), a molecule that can bind to the spike RDB-hACE2 interface could block the virus entry. Here, we performed a virtual screening of 55 compounds to identify potential molecules that can bind to the spike glycoprotein and spike-ACE2 complex interface. It was found that the compound ethyl 1-{3-[(2,4-dichlorobenzyl) carbamoyl]-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolinyl}-4-piperidine carboxylate (the S54 ligand) and ethyl 1-{3-[(2,4-dichlorobenzyl) carbamoyl]-1-ethyl-6-fluoro-4-oxo-1,4-dihydro-7-quinolinyl}-4 piperazine carboxylate (the S55 ligand) forms hydrophobic interactions with Tyr41A, Tyr505B and Tyr553B, Leu29A, Phe495B, respectively of the spike glycoprotein, the hotspot residues in the spike glycoprotein RBD-hACE2 binding interface. Furthermore, molecular dynamics simulations and free energy calculations using the MM-GBSA method showed that the S54 ligand is a stronger binder than a known SARS-CoV spike inhibitor SSAA09E3 (N-(9,10-dioxo-9, 10-dihydroanthracen-2-yl) benzamide).Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Antivirales/química , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2/química , COVID-19 , Humanos , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/química
11.
J Chem Inf Model ; 61(4): 1801-1813, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33797240

RESUMEN

Even though the first docking procedures were developed almost 40 years ago, they are still under intense development, alongside with their validation. In this article, we are proposing the use of the quantum free-orbital AlteQ method in evaluating the correctness of ligand binding poses and their ranking. The AlteQ method calculates the electron density in the interspace between the ligand and the receptor, and since their interactions follow the maximum complementarity principle, an equation can be obtained, which describes these interactions. In this way, the AlteQ method evaluates the quality of contacts between the ligand and the receptor, bypasses the drawbacks of using ligand RMSD as a measure of docking quality, and can be considered as an improvement of the "fraction of recovered ligand-receptor contacts" method. Free Windows and Linux versions of the AlteQ program for assessing complementarity between the ligand and the receptor are available for download at www.chemosophia.com.


Asunto(s)
Simulación del Acoplamiento Molecular , Sitios de Unión , Ligandos , Unión Proteica
12.
Future Med Chem ; 13(10): 863-875, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33847171

RESUMEN

The complementarity principle is a well-established concept in the field of chemistry and biology. This concept is widely studied as the lock-and-key relationship between two structures, such as enzyme and ligand interactions. These interactions are based on the overlap of electron clouds between two structures. In this study, a mathematical relation determining complementarity of intermolecular contacts in terms of overlaps of electron clouds was examined using a quantum orbital-free AlteQ method developed in-house for 64 EGFR-ligand complexes with experimentally measured binding affinity data. A very high correlation was found between the overlap of ligand and enzyme electron clouds and the calculated terms, providing a good basis for prognosis of bioactivity and for molecular docking studies.


Asunto(s)
Electrones , Simulación del Acoplamiento Molecular , Teoría Cuántica , Receptores ErbB/química , Humanos , Ligandos
13.
Future Med Chem ; 13(4): 363-378, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33415989

RESUMEN

Background: The SARS-CoV-2 3CLpro is one of the primary targets for designing new and repurposing known drugs. Methodology: A virtual screening of molecules from the Natural Product Atlas was performed, followed by molecular dynamics simulations of the most potent inhibitor bound to two conformations of the protease and into two binding sites. Conclusion: Eight molecules with appropriate ADMET properties are suggested as potential inhibitors. The greatest benefit of this study is the demonstration that these ligands can bind in the catalytic site but also to the groove between domains II and III, where they interact with a series of residues which have an important role in the dimerization and the maturation process of the enzyme.


Asunto(s)
Antivirales/farmacología , Productos Biológicos/farmacología , SARS-CoV-2/efectos de los fármacos , Sitios de Unión , COVID-19/prevención & control , Biología Computacional , Diseño de Fármacos , Reposicionamiento de Medicamentos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nucleósidos/farmacología , Péptido Hidrolasas/química , Inhibidores de Proteasas/química , Unión Proteica , Multimerización de Proteína , Programas Informáticos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19
14.
ChemMedChem ; 16(5): 822-838, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33155373

RESUMEN

We report a series of hybrid quinazoline-1,3,5-triazine derivatives as EGFR inhibitors, which were synthesised and tested by using a variety of in vitro, in silico, and in vivo techniques. The derivatives were found to be active against different cancer cell lines and nontoxic against normal ones, with compounds 7 c, 7 d, 7 e, and 7 j being the most potent ones. The derivatives were also evaluated for angiogenesis inhibition potency in chicken eggs, and molecular docking and dynamics simulation studies were carried out to elucidate the fundamental substituent groups essential for their bioactivity. Additionally, a SAR study of the derivatives was performed for future compound optimisation. These studies suggested that the derivatives have a high affinity towards EGFR with favourable pharmacological properties. The most active compound (7 e) was further evaluated for in vivo anticancer activity against DMBA-induced tumours in female Sprague-Dawley rats as well as its effects on plasma antioxidant status, biotransformation enzymes, and lipid profile. The study suggested that 7 e has lead properties against breast cancer and can serve as a starting compound for further development of anti-EGFR compounds.


Asunto(s)
Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Triazinas/farmacología , 9,10-Dimetil-1,2-benzantraceno , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Humanos , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Quinazolinas/química , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Triazinas/química , Células Tumorales Cultivadas
15.
J Mol Graph Model ; 101: 107756, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32979659

RESUMEN

Acetylation plays a key role in maintaining and balancing cellular regulation and homeostasis. Acetyltransferases are an important class of enzymes which mediate this acetylation process. EP300 is a type 3 major lysine (K) acetyl transferase, and its aberrant activity is implicated in many human diseases. Hence, targeting EP300 mediated acetylation is a necessary step to control the associated diseases. Currently, a few EP300 inhibitors are known, among which curcumin is the most widely investigated molecule. However, due to its instability, chemical aggregation and reactivity, its inhibitory activity against the EP300 acetyltransferase domain is disputable. To address this curcumin problem, different curcumin analogues have been synthesized. These molecules were selected for screening against the EP300 acetyltransferase domain using in silico docking and MD analysis. We have successfully elucidated that the curcumin analogue CNB001 is a potential EP300 inhibitor with good drug-like characteristics.


Asunto(s)
Curcumina , Acetilación , Acetiltransferasas , Curcumina/farmacología , Proteína p300 Asociada a E1A , Humanos , Lisina , Procesamiento Proteico-Postraduccional
16.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785199

RESUMEN

Human serum albumin (HSA) is the most abundant carrier protein in the human body. Competition for the same binding site between different ligands can lead to an increased active concentration or a faster elimination of one or both ligands. Indomethacin and quercetin both bind to the binding site located in the IIA subdomain. To determine the nature of the HSA-indomethacin-quercetin interactions, spectrofluorometric, docking, molecular dynamics studies, and quantum chemical calculations were performed. The results show that the indomethacin and quercetin binding sites do not overlap. Moreover, the presence of quercetin does not influence the binding constant and position of indomethacin in the pocket. However, binding of quercetin is much more favorable in the presence of indomethacin, with its position and interactions with HSA significantly changed. These results provide a new insight into drug-drug interactions, which can be important in situations when displacement from HSA or other proteins is undesirable or even desirable. This principle could also be used to deliberately prolong or shorten the xenobiotics' half-life in the body, depending on the desired outcomes.


Asunto(s)
Indometacina/química , Quercetina/química , Albúmina Sérica Humana/química , Sitios de Unión , Interacciones Farmacológicas , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , Espectrometría de Fluorescencia
17.
Future Med Chem ; 12(15): 1387-1397, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32689817

RESUMEN

Background: A principle of complementarity is a well-established concept in chemistry and biology. This concept is based on the overlap of electron clouds of the molecules in question. Materials & methods: In this article, one such approach (an in-house developed quantum free-orbital AlteQ method) was used to evaluate the complementarity of 51 CDK-ligand complexes. Results: A significant universally applicable correlation (adjusted R2 = 0.9749; p < 2.2 × 10-16) relating the product of ligand and enzyme electron densities to the product of distances between the contacting atomic centers and the type of atoms involved in the interaction was found. Conclusion: The terms calculated in this article can provide a good basis for prognosis of bioactivity and scientifically based molecular docking.


Asunto(s)
Algoritmos , Quinasa 2 Dependiente de la Ciclina/química , Electrones , Simulación del Acoplamiento Molecular , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Ligandos
18.
Acta Pharm ; 69(4): 607-619, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31639087

RESUMEN

Flavonoids are natural polyphenolic compounds present in a wide spectrum of plants that have a beneficial effect on human health. In the context of cardiovascular diseases related to plaque and thrombus formation, flavonoids exhibit an anti-aggregatory effect. Previously, it has been reported that all tested flavonoids exhibit an antiaggregatory effect on platelet aggregation when measured by impedance aggregometry on whole blood, in the test of aggregation induced by adenosine diphosphate (ADP). As not all flavonoids have the same targets within signaling pathways, an assumption of a common non-specific mechanism related to lipophilicity is to be considered. To test this hypothesis, reverse-phase thin layer chromatography was used to assess the lipophilicity of flavonoids; impedance aggregometry was used for testing of platelet aggregation and flow cytometry to monitor the influence of flavonoids on platelet activation. Lipophilicity analysis showed a highly negative correlation of logP and MINaAC for groups of flavones and flavanones. As determined by flow cytometry, the exposition of receptors necessary for the promotion of platelet activation and primary clot formation was diminished, i.e., lowered expression of the activated form of integrin αIIbß3 was observed in the presence of flavanone. Platelet membrane stabilization by flavonoids as a mechanism of antiaggregatory effect has been supported by impedance aggregometry experiments when specific inhibitors of platelet aggregation signaling pathways (U73122, indomethacin, verapamil) were used in the presence of a weak (ADP) and a strong (TRAP-6) agonist of aggregation. While individual flavonoids can have specific targets within aggregation signaling pathways, all flavonoids share a common non-specific mechanism of platelet aggregation inhibition related to their lipophilicity and membrane stabilization that, to some extent, contributes to their antiaggregatory effect.


Asunto(s)
Plaquetas/efectos de los fármacos , Flavonoides/fisiología , Agregación Plaquetaria/efectos de los fármacos , Estrenos/farmacología , Humanos , Indometacina/farmacología , Pirrolidinonas/farmacología , Transducción de Señal/efectos de los fármacos , Verapamilo/farmacología
19.
Molecules ; 24(17)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480528

RESUMEN

Cytochromes P450 are major metabolic enzymes involved in the biotransformation of xenobiotics. The majority of xenobiotics are metabolized in the liver, in which the highest levels of cytochromes P450 are expressed. Flavonoids are natural compounds to which humans are exposed through everyday diet. In the previous study, selected flavonoid aglycones showed inhibition of CYP3A4 enzyme. Thus, the objective of this study was to determine if these flavonoids inhibit metabolic activity of CYP1A2, CYP2A6, CYP2C8, and CYP2D6 enzymes. For this purpose, the O-deethylation reaction of phenacetin was used for monitoring CYP1A2 enzyme activity, coumarin 7-hydroxylation for CYP2A6 enzyme activity, 6-α-hydroxylation of paclitaxel for CYP2C8 enzyme activity, and dextromethorphan O-demethylation for CYP2D6 enzyme activity. The generated metabolites were monitored by high-performance liquid chromatography coupled with diode array detection. Hesperetin, pinocembrin, chrysin, isorhamnetin, and morin inhibited CYP1A2 activity; apigenin, tangeretin, galangin, and isorhamnetin inhibited CYP2A6 activity; and chrysin, chrysin-dimethylether, and galangin inhibited CYP2C8. None of the analyzed flavonoids showed inhibition of CYP2D6. The flavonoids in this study were mainly reversible inhibitors of CYP1A2 and CYP2A6, while the inhibition of CYP2C8 was of mixed type (reversible and irreversible). The most prominent reversible inhibitor of CYP1A2 was chrysin, and this was confirmed by the docking study.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/farmacología , Sistema Enzimático del Citocromo P-450/química , Flavonoides/química , Humanos , Simulación del Acoplamiento Molecular , Especificidad por Sustrato/efectos de los fármacos
20.
Eur J Med Chem ; 143: 769-779, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29220797

RESUMEN

Four series of primaquine (PQ) derivatives were screened for antitubercular and antiplasmodial activity: amides 1a-k, ureas 2a-s, semicarbazides 3a-c and bis-ureas 4a-u. Antimycobacterial activity of PQ derivatives against Mycobacterium tuberculosis (MTB), M. avium complex (MAC) and M. avium subsp. paratuberculosis (MAP) were evaluated in vitro and compared with PQ and the standard antitubercular drugs. In general, the PQ derivatives showed higher potency than the parent compound. Most of the compounds of series 1 and 2 showed high activity against MAP, comparable or even higher than the relevant drug ciprofloxacin, and weak or no activity against MTB and MAC. bis-Trifluoromethylated cinnamamide 1k showed low cytotoxicity and high activity against all three Mycobacterium species and their activities were comparable or slightly higher than those of the reference drugs. PQ urea derivatives with hydroxyl, halogen and trifluoromethyl substituents on benzene ring 2f-p exerted very strong antimycobacterial activity towards all tested mycobacteria, stronger than PQ and the relevant standard drug(s). Unfortunately, these compounds had relatively high cytotoxicity, except bromo 2l and trifluoromethyl 2m, 2n derivatives. In general, meta-substituted derivatives were more active than analogues para-derivatives. Phenyl ureas were also more active than cycloalkyl or hydroxyalkyl ureas. Semicarbazide 3a showed similar activity as PQ, while the other two semicarbazides were inactive. Bis-urea derivatives 4 were generally less active than the urea derivatives sharing the same scaffold, differing only in the spacer type. Out of 21 evaluated bis-urea derivatives, only p-Cl/m-CF3 phenyl derivative 4p, benzhydryl derivatives 4t and 4u and bis-PQ derivative 4s showed high activity, higher than all three reference drugs. After comparison of activity and cytotoxicity, urea 2m and bis-urea 4u could be considered as the most promising agents. Antimalarial potential of PQ derivatives in vitro against the liver stage of P. berghei was evaluated as well. 3-(4-Chlorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea (4l) was the most active compound (IC50 = 42 nM; cytotoxicity/activity ratio >2000). Our results bring new insights into development of novel anti-TB and antimalarial compounds.


Asunto(s)
Antibacterianos/farmacología , Antimaláricos/farmacología , Mycobacterium/efectos de los fármacos , Plasmodium berghei/efectos de los fármacos , Primaquina/farmacología , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antimaláricos/síntesis química , Antimaláricos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium/crecimiento & desarrollo , Plasmodium berghei/crecimiento & desarrollo , Primaquina/síntesis química , Primaquina/química , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...