Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiology (Reading) ; 170(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38511653

RESUMEN

Different bacteria change their life styles in response to specific amino acids. In Pseudomonas putida (now alloputida) KT2440, arginine acts both as an environmental and a metabolic indicator that modulates the turnover of the intracellular second messenger c-di-GMP, and expression of biofilm-related genes. The transcriptional regulator ArgR, belonging to the AraC/XylS family, is key for the physiological reprogramming in response to arginine, as it controls transport and metabolism of the amino acid. To further expand our knowledge on the roles of ArgR, a global transcriptomic analysis of KT2440 and a null argR mutant growing in the presence of arginine was carried out. Results indicate that this transcriptional regulator influences a variety of cellular functions beyond arginine metabolism and transport, thus widening its regulatory role. ArgR acts as positive or negative modulator of the expression of several metabolic routes and transport systems, respiratory chain and stress response elements, as well as biofilm-related functions. The partial overlap between the ArgR regulon and those corresponding to the global regulators RoxR and ANR is also discussed.


Asunto(s)
Arginina , Proteínas Represoras , Arginina/metabolismo , Proteínas Represoras/genética , Pseudomonas/genética , Expresión Génica , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Adv Exp Med Biol ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38429473

RESUMEN

Beyond their role as protein-building units, amino acids are modulators of multiple behaviours in different microorganisms. In the root-colonizing beneficial bacterium Pseudomonas putida (recently proposed to be reclassified as alloputida) KT2440, current evidence suggests that arginine functions both as a metabolic indicator and as an environmental signal molecule, modulating processes such as chemotactic responses, siderophore-mediated iron uptake or the levels of the intracellular second messenger cyclic diguanylate (c-di-GMP). Using microcalorimetry and extracellular flux analysis, in this work we have studied the metabolic adaptation of P. putida KT2440 to the presence of L-arginine in the growth medium, and the influence of mutations related to arginine metabolism. Arginine causes rapid changes in the respiratory activity of P. putida, particularly magnified in a mutant lacking the transcriptional regulator ArgR. The metabolic activity of mutants affected in arginine transport and metabolism is also altered during biofilm formation in the presence of the amino acid. The results obtained here further support the role of arginine as a metabolic signal in P. putida and the relevance of ArgR in the adaptation to the amino acid. They also serve as proof of concept on the use of calorimetric and extracellular flux techniques to analyse metabolic responses in bacteria and the impact of different mutant backgrounds on such responses.

3.
Cell Commun Signal ; 22(1): 104, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331871

RESUMEN

Extravasation is a fundamental step in the metastatic journey, where cancer cells exit the bloodstream and breach the endothelial cell barrier to infiltrate target tissues. The tactics cancer cells employ are sophisticated, closely reflecting those used by the immune system for tissue surveillance. Remarkably, tumor cells have been observed to form distinct associations or clusters with immune cells where neutrophils stand out as particularly crucial partners. These interactions are not accidental; they are critical for cancer cells to exploit the immune functions of neutrophils and successfully extravasate. In another strategy, tumor cells mimic the behavior and characteristics of immune cells. They release a suite of inflammatory mediators, which under normal circumstances, guide the processes of endothelium reshaping and facilitate the entry and movement of immune cells within tissues. In this review, we offer a new perspective on the tactics employed by cancer cells to extravasate and infiltrate target tissues. We delve into the myriad mechanisms that tumor cells borrow, adapt, and refine from the immune playbook. Video Abstract.


Asunto(s)
Células Endoteliales , Neutrófilos , Movimiento Celular , Neutrófilos/metabolismo , Células Endoteliales/metabolismo
4.
Microbiol Res ; 277: 127498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776579

RESUMEN

The ability of many bacteria to form biofilms contributes to their resilience and makes infections more difficult to treat. Biofilm growth leads to the formation of internal oxygen gradients, creating hypoxic subzones where cellular reducing power accumulates, and metabolic activities can be limited. The pathogen Pseudomonas aeruginosa counteracts the redox imbalance in the hypoxic biofilm subzones by producing redox-active electron shuttles (phenazines) and by secreting extracellular matrix, leading to an increased surface area-to-volume ratio, which favors gas exchange. Matrix production is regulated by the second messenger bis-(3',5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) in response to different environmental cues. RmcA (Redox modulator of c-di-GMP) from P. aeruginosa is a multidomain phosphodiesterase (PDE) that modulates c-di-GMP levels in response to phenazine availability. RmcA can also sense the fermentable carbon source arginine via a periplasmic domain, which is linked via a transmembrane domain to four cytoplasmic Per-Arnt-Sim (PAS) domains followed by a diguanylate cyclase (DGC) and a PDE domain. The biochemical characterization of the cytoplasmic portion of RmcA reported in this work shows that the PAS domain adjacent to the catalytic domain tunes RmcA PDE activity in a redox-dependent manner, by differentially controlling protein conformation in response to FAD or FADH2. This redox-dependent mechanism likely links the redox state of phenazines (via FAD/FADH2 ratio) to matrix production as indicated by a hyperwrinkling phenotype in a macrocolony biofilm assay. This study provides insights into the role of RmcA in transducing cellular redox information into a structural response of the biofilm at the population level. Conditions of resource (i.e. oxygen and nutrient) limitation arise during chronic infection, affecting the cellular redox state and promoting antibiotic tolerance. An understanding of the molecular linkages between condition sensing and biofilm structure is therefore of crucial importance from both biological and engineering standpoints.


Asunto(s)
Proteínas de Escherichia coli , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , GMP Cíclico/metabolismo , Biopelículas , Proteínas de Escherichia coli/genética , Polímeros/metabolismo , Fenazinas/metabolismo , Oxígeno , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
5.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37550221

RESUMEN

Amino acids are crucial in nitrogen cycling and to shape the metabolism of microorganisms. Among them, arginine is a versatile molecule able to sustain nitrogen, carbon, and even ATP supply and to regulate multicellular behaviors such as biofilm formation. Arginine modulates the intracellular levels of 3'-5'cyclic diguanylic acid (c-di-GMP), a second messenger that controls biofilm formation, maintenance and dispersion. In Pseudomonas putida, KT2440, a versatile microorganism with wide biotechnological applications, modulation of c-di-GMP levels by arginine requires the transcriptional regulator ArgR, but the connections between arginine metabolism and c-di-GMP are not fully characterized. It has been recently demonstrated that arginine can be perceived by the opportunistic human pathogen Pseudomonas aeruginosa through the transducer RmcA protein (Redox regulator of c-di-GMP), which can directly decrease c-di-GMP levels and possibly affect biofilm architecture. A RmcA homolog is present in P. putida, but its function and involvement in arginine perceiving or biofilm life cycle had not been studied. Here, we present a preliminary characterization of the RmcA-dependent response to arginine in P. putida in modulating biofilm formation, c-di-GMP levels, and energy metabolism. This work contributes to further understanding the molecular mechanisms linking biofilm homeostasis and environmental adaptation.


Asunto(s)
Proteínas Bacterianas , Pseudomonas putida , Humanos , Proteínas Bacterianas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , GMP Cíclico/metabolismo , Biopelículas , Arginina/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica
6.
Adv Exp Med Biol ; 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37608242

RESUMEN

Environmental nutrients control bacterial biofilm homeostasis, by regulating the intracellular levels of c-di-GMP. One component transducers can sense different classes of small molecules through a periplasmic domain; the nutrient recognition triggers the subsequent regulation of the downstream cytosolic diguanylate cyclase (GGDEF) or phosphodiesterase (EAL) domains, via transmembrane helix(ces), to finally change c-di-GMP levels.Protein studies on such transducers have been mainly carried out on isolated domains due to the presence of the transmembrane portion. Nevertheless, the cleavage of GGDEF and EAL-containing proteins could be detrimental since both tertiary and quaternary structures could be allosterically controlled; to by-pass this limitation, studies on the corresponding full-length proteins are highly desired.We have in silico selected a GGDEF-EAL transducer from Dyella thiooxydans (ann. A0A160N0B7), whose periplasmic binding domain was predicted to bind to arginine, a nutrient often associated with chronic infections and biofilm. This protein has been used as an in vitro tool for the identification of the best approach for its isolation, including (i) protein engineering to produce a water-soluble version via QTY (Glutamine, Threonine, and Tyrosine) code or (ii) nanodiscs assembly. The results on this "prototype" may represent the proof-of-concept for future isolation of other transmembrane proteins sharing the same architecture, including more complex nutrient-based transducers controlling c-di-GMP levels.

7.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203650

RESUMEN

Transthyretin (TTR) is an amyloidogenic homotetramer involved in the transport of thyroxine in blood and cerebrospinal fluid. To date, more than 130 TTR point mutations are known to destabilise the TTR tetramer, leading to its extracellular pathological aggregation accumulating in several organs, such as heart, peripheral and autonomic nerves, and leptomeninges. Tolcapone is an FDA-approved drug for Parkinson's disease that has been repurposed as a TTR stabiliser. We characterised 3-O-methyltolcapone and two newly synthesized lipophilic analogues, which are expected to be protected from the metabolic glucuronidation that is responsible for the lability of tolcapone in the organism. Immunoblotting assays indicated the high degree of TTR stabilisation, coupled with binding selectivity towards TTR in diluted plasma of 3-O-methyltolcapone and its lipophilic analogues. Furthermore, in vitro toxicity data showed their several-fold improved neuronal and hepatic safety compared to tolcapone. Calorimetric and structural data showed that both T4 binding sites of TTR are occupied by 3-O-methyltolcapone and its lipophilic analogs, consistent with an effective TTR tetramer stabilisation. Moreover, in vitro permeability studies showed that the three compounds can effectively cross the blood-brain barrier, which is a prerequisite for the inhibition of TTR amyloidogenesis in the cerebrospinal fluid. Our data demonstrate the relevance of 3-O-methyltolcapone and its lipophilic analogs as potent inhibitors of TTR amyloidogenesis.


Asunto(s)
Benzofenonas , Prealbúmina , Tolcapona , Vías Autónomas
8.
Sci Adv ; 8(50): eabm7902, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525488

RESUMEN

The contribution of nutrient availability to control epidermal cell proliferation, inflammation, and hyperproliferative diseases remains unknown. Here, we studied extracellular serine and serine/glycine metabolism using human keratinocytes, human skin biopsies, and a mouse model of psoriasis-like disease. We focused on a metabolic enzyme, serine hydroxymethyltransferase (SHMT), that converts serine into glycine and tetrahydrofolate-bound one­carbon units to support cell growth. We found that keratinocytes are both serine and glycine auxotrophs. Metabolomic profiling and hypoxanthine supplementation indicated that SHMT silencing/inhibition reduced cell growth through purine depletion, leading to nucleotide loss. In addition, topical application of an SHMT inhibitor suppressed both keratinocyte proliferation and inflammation in the imiquimod model and resulted in a decrease in psoriasis-associated gene expression. In conclusion, our study highlights SHMT2 activity and serine/glycine availability as an important metabolic hub controlling both keratinocyte proliferation and inflammatory cell expansion in psoriasis and holds promise for additional approaches to treat skin diseases.


Asunto(s)
Psoriasis , Enfermedades de la Piel , Ratones , Animales , Humanos , Serina/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Psoriasis/patología , Glicina/farmacología , Glicina/metabolismo , Inflamación/patología , Proliferación Celular
9.
Cell Death Dis ; 13(11): 981, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411275

RESUMEN

Smith-Magenis syndrome (SMS) is a neurodevelopmental disorder characterized by cognitive and behavioral symptoms, obesity, and sleep disturbance, and no therapy has been developed to alleviate its symptoms or delay disease onset. SMS occurs due to haploinsufficiency of the retinoic acid-induced-1 (RAI1) gene caused by either chromosomal deletion (SMS-del) or RAI1 missense/nonsense mutation. The molecular mechanisms underlying SMS are unknown. Here, we generated and characterized primary cells derived from four SMS patients (two with SMS-del and two carrying RAI1 point mutations) and four control subjects to investigate the pathogenetic processes underlying SMS. By combining transcriptomic and lipidomic analyses, we found altered expression of lipid and lysosomal genes, deregulation of lipid metabolism, accumulation of lipid droplets, and blocked autophagic flux. We also found that SMS cells exhibited increased cell death associated with the mitochondrial pathology and the production of reactive oxygen species. Treatment with N-acetylcysteine reduced cell death and lipid accumulation, which suggests a causative link between metabolic dyshomeostasis and cell viability. Our results highlight the pathological processes in human SMS cells involving lipid metabolism, autophagy defects and mitochondrial dysfunction and suggest new potential therapeutic targets for patient treatment.


Asunto(s)
Síndrome de Smith-Magenis , Humanos , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Síndrome de Smith-Magenis/patología , Haploinsuficiencia/genética , Metabolismo de los Lípidos/genética , Factores de Transcripción/metabolismo , Transactivadores/metabolismo , Fenotipo , Autofagia/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Lípidos
10.
Front Cell Infect Microbiol ; 12: 910864, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35923800

RESUMEN

Dendritic cells (DCs) are important mediators of the induction and regulation of adaptive immune responses following microbial infection and inflammation. Sensing environmental danger signals including viruses, microbial products, or inflammatory stimuli by DCs leads to the rapid transition from a resting state to an activated mature state. DC maturation involves enhanced capturing and processing of antigens for presentation by major histocompatibility complex (MHC) class I and class II, upregulation of chemokines and their receptors, cytokines and costimulatory molecules, and migration to lymphoid tissues where they prime naive T cells. Orchestrating a cellular response to environmental threats requires a high bioenergetic cost that accompanies the metabolic reprogramming of DCs during activation. We previously demonstrated that DCs undergo a striking functional transition after stimulation of the retinoic acid-inducible gene I (RIG-I) pathway with a synthetic 5' triphosphate containing RNA (termed M8), consisting of the upregulation of interferon (IFN)-stimulated antiviral genes, increased DC phagocytosis, activation of a proinflammatory phenotype, and induction of markers associated with immunogenic cell death. In the present study, we set out to determine the metabolic changes associated with RIG-I stimulation by M8. The rate of glycolysis in primary human DCs was increased in response to RIG-I activation, and glycolytic reprogramming was an essential requirement for DC activation. Pharmacological inhibition of glycolysis in monocyte-derived dendritic cells (MoDCs) impaired type I IFN induction and signaling by disrupting the TBK1-IRF3-STAT1 axis, thereby countering the antiviral activity induced by M8. Functionally, the impaired IFN response resulted in enhanced viral replication of dengue, coronavirus 229E, and Coxsackie B5.


Asunto(s)
Antivirales , Células Dendríticas , Antivirales/metabolismo , Glucólisis , Humanos , Monocitos , Tretinoina/metabolismo
11.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457206

RESUMEN

Bacterial biofilm represents a multicellular community embedded within an extracellular matrix attached to a surface. This lifestyle confers to bacterial cells protection against hostile environments, such as antibiotic treatment and host immune response in case of infections. The Pseudomonas genus is characterised by species producing strong biofilms difficult to be eradicated and by an extraordinary metabolic versatility which may support energy and carbon/nitrogen assimilation under multiple environmental conditions. Nutrient availability can be perceived by a Pseudomonas biofilm which, in turn, readapts its metabolism to finally tune its own formation and dispersion. A growing number of papers is now focusing on the mechanism of nutrient perception as a possible strategy to weaken the biofilm barrier by environmental cues. One of the most important nutrients is amino acid L-arginine, a crucial metabolite sustaining bacterial growth both as a carbon and a nitrogen source. Under low-oxygen conditions, L-arginine may also serve for ATP production, thus allowing bacteria to survive in anaerobic environments. L-arginine has been associated with biofilms, virulence, and antibiotic resistance. L-arginine is also a key precursor of regulatory molecules such as polyamines, whose involvement in biofilm homeostasis is reported. Given the biomedical and biotechnological relevance of biofilm control, the state of the art on the effects mediated by the L-arginine nutrient on biofilm modulation is presented, with a special focus on the Pseudomonas biofilm. Possible biotechnological and biomedical applications are also discussed.


Asunto(s)
GMP Cíclico , Pseudomonas aeruginosa , Arginina/metabolismo , Arginina/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas , Carbono/metabolismo , Carbono/farmacología , GMP Cíclico/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , Nutrientes , Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología
12.
FEBS J ; 289(6): 1625-1649, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694685

RESUMEN

De novo thymidylate synthesis is a crucial pathway for normal and cancer cells. Deoxythymidine monophosphate (dTMP) is synthesized by the combined action of three enzymes: serine hydroxymethyltransferase (SHMT1), dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS), with the latter two being targets of widely used chemotherapeutics such as antifolates and 5-fluorouracil. These proteins translocate to the nucleus after SUMOylation and are suggested to assemble in this compartment into the thymidylate synthesis complex. We report the intracellular dynamics of the complex in cancer cells by an in situ proximity ligation assay, showing that it is also detected in the cytoplasm. This result indicates that the role of the thymidylate synthesis complex assembly may go beyond dTMP synthesis. We have successfully assembled the dTMP synthesis complex in vitro, employing tetrameric SHMT1 and a bifunctional chimeric enzyme comprising human thymidylate synthase and dihydrofolate reductase. We show that the SHMT1 tetrameric state is required for efficient complex assembly, indicating that this aggregation state is evolutionarily selected in eukaryotes to optimize protein-protein interactions. Lastly, our results regarding the activity of the complete thymidylate cycle in vitro may provide a useful tool with respect to developing drugs targeting the entire complex instead of the individual components.


Asunto(s)
Timidina Monofosfato , Timidilato Sintasa , Núcleo Celular/metabolismo , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Timidina Monofosfato/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo
13.
Acta Crystallogr D Struct Biol ; 77(Pt 11): 1401-1410, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34726168

RESUMEN

The capability to obtain essential nutrients in hostile environments is a critical skill for pathogens. Under zinc-deficient conditions, Pseudomonas aeruginosa expresses a pool of metal homeostasis control systems that is complex compared with other Gram-negative bacteria and has only been partially characterized. Here, the structure and zinc-binding properties of the protein PA4063, the first component of the PA4063-PA4066 operon, are described. PA4063 has no homologs in other organisms and is characterized by the presence of two histidine-rich sequences. ITC titration detected two zinc-binding sites with micromolar affinity. Crystallographic characterization, performed both with and without zinc, revealed an α/ß-sandwich structure that can be classified as a noncanonical ferredoxin-like fold since it differs in size and topology. The histidine-rich stretches located at the N-terminus and between ß3 and ß4 are disordered in the apo structure, but a few residues become structured in the presence of zinc, contributing to coordination in one of the two sites. The ability to bind two zinc ions at relatively low affinity, the absence of catalytic cavities and the presence of two histidine-rich loops are properties and structural features which suggest that PA4063 might play a role as a periplasmic zinc chaperone or as a concentration sensor useful for optimizing the response of the pathogen to zinc deficiency.


Asunto(s)
Pseudomonas aeruginosa , Zinc , Humanos , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/microbiología , Zinc/metabolismo
14.
Protein Sci ; 30(12): 2385-2395, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34605082

RESUMEN

SH2 domains are a class of protein-protein interaction modules with the function to recognize and bind sequences characterized by the presence of a phosphorylated tyrosine. SHP2 is a protein phosphatase involved in the Ras-ERK1/2 signaling pathway that possess two SH2 domains, namely, N-SH2 and C-SH2, that mediate the interaction of SHP2 with various partners and determine the regulation of its catalytic activity. One of the main interactors of the SH2 domains of SHP2 is Gab2, a scaffolding protein with critical role in determining cell differentiation. Despite their key biological role and the importance of a correct native fold to ensure it, the mechanism of binding of SH2 domains with their ligands and the determinants of their stability have been poorly characterized. In this article, we present a comprehensive kinetic study of the folding of the C-SH2 domain and the binding mechanism with a peptide mimicking a region of Gab2. Our data, obtained at different pH and ionic strength conditions and supported by site-directed mutagenesis, highlight the role of electrostatic interactions in the early events of recognition. Interestingly, our results suggest a key role of a highly conserved histidine residue among SH2 family in the interaction with negative charges carried by the phosphotyrosine of Gab2. Moreover, the analysis of the equilibrium and kinetic folding data of C-SH2 describes a complex mechanism implying a change in rate-limiting step at high denaturant concentrations. Our data are discussed under the light of previous works on N-SH2 domain of SHP2 and other SH2 domains.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Histidina/química , Péptidos/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Histidina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Mutación , Péptidos/genética , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Electricidad Estática , Termodinámica , Urea/química , Dominios Homologos src
15.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207731

RESUMEN

Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the microvasculature, cross the blood-brain barrier, and metabolically adapt to the nutrients available in the new microenvironment. In this review, we analyzed what makes the brain a suitable site for the development of metastases and how this microenvironment, through the continuous release of neurotransmitters and amino acids in the extracellular milieu, is able to support the metabolic needs of metastasizing cells. We also suggested a possible role for amino acids released by the brain through the endothelial cells of the blood-brain barrier into the bloodstream in triggering the process of extravasation/invasion of the brain parenchyma.

16.
Comput Struct Biotechnol J ; 19: 3034-3041, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136101

RESUMEN

Human serine hydroxymethyltransferase (SHMT) regulates the serine-glycine one carbon metabolism and plays a role in cancer metabolic reprogramming. Two SHMT isozymes are acting in the cell: SHMT1 encoding the cytoplasmic isozyme, and SHMT2 encoding the mitochondrial one. Here we present a molecular model built on experimental data reporting the interaction between SHMT1 protein and SHMT2 mRNA, recently discovered in lung cancer cells. Using a stochastic dynamic model, we show that RNA moieties dynamically regulate serine and glycine concentration, shaping the system behaviour. For the first time we observe an active functional role of the RNA in the regulation of the serine-glycine metabolism and availability, which unravels a complex layer of regulation that cancer cells exploit to fine tune amino acids availability according to their metabolic needs. The quantitative model, complemented by an experimental validation in the lung adenocarcinoma cell line H1299, exploits RNA molecules as metabolic switches of the SHMT1 activity. Our results pave the way for the development of RNA-based molecules able to unbalance serine metabolism in cancer cells.

18.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916835

RESUMEN

The disturbance of protein O-GlcNAcylation is emerging as a possible link between altered brain metabolism and the progression of neurodegeneration. As observed in brains with Alzheimer's disease (AD), flaws of the cerebral glucose uptake translate into reduced protein O-GlcNAcylation, which promote the formation of pathological hallmarks. A high-fat diet (HFD) is known to foster metabolic dysregulation and insulin resistance in the brain and such effects have been associated with the reduction of cognitive performances. Remarkably, a significant role in HFD-related cognitive decline might be played by aberrant protein O-GlcNAcylation by triggering the development of AD signature and mitochondrial impairment. Our data support the impairment of total protein O-GlcNAcylation profile both in the brain of mice subjected to a 6-week high-fat-diet (HFD) and in our in vitro transposition on SH-SY5Y cells. The reduction of protein O-GlcNAcylation was associated with the development of insulin resistance, induced by overfeeding (i.e., defective insulin signaling and reduced mitochondrial activity), which promoted the dysregulation of the hexosamine biosynthetic pathway (HBP) flux, through the AMPK-driven reduction of GFAT1 activation. Further, we observed that a HFD induced the selective impairment of O-GlcNAcylated-tau and of O-GlcNAcylated-Complex I subunit NDUFB8, thus resulting in tau toxicity and reduced respiratory chain functionality respectively, highlighting the involvement of this posttranslational modification in the neurodegenerative process.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Acilación , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Línea Celular Tumoral , Masculino , Ratones , Mitocondrias/patología
19.
Life (Basel) ; 11(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418960

RESUMEN

GGDEF-containing proteins respond to different environmental cues to finely modulate cyclic diguanylate (c-di-GMP) levels in time and space, making the allosteric control a distinctive trait of the corresponding proteins. The diguanylate cyclase mechanism is emblematic of this control: two GGDEF domains, each binding one GTP molecule, must dimerize to enter catalysis and yield c-di-GMP. The need for dimerization makes the GGDEF domain an ideal conformational switch in multidomain proteins. A re-evaluation of the kinetic profile of previously characterized GGDEF domains indicated that they are also able to convert GTP to GMP: this unexpected reactivity occurs when conformational issues hamper the cyclase activity. These results create new questions regarding the characterization and engineering of these proteins for in solution or structural studies.

20.
Cell Death Dis ; 11(11): 1012, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243973

RESUMEN

Nutrient utilization and reshaping of metabolism in cancer cells is a well-known driver of malignant transformation. Less clear is the influence of the local microenvironment on metastasis formation and choice of the final organ to invade. Here we show that the level of the amino acid serine in the cytosol affects the migratory properties of lung adenocarcinoma (LUAD) cells. Inhibition of serine or glycine uptake from the extracellular milieu, as well as knockdown of the cytosolic one-carbon metabolism enzyme serine hydroxymethyltransferase (SHMT1), abolishes migration. Using rescue experiments with a brain extracellular extract, and direct measurements, we demonstrate that cytosolic serine starvation controls cell movement by increasing reactive oxygen species formation and decreasing ATP levels, thereby promoting activation of the AMP sensor kinase (AMPK) by phosphorylation. Activation of AMPK induces remodeling of the cytoskeleton and finally controls cell motility. These results highlight that cytosolic serine metabolism plays a key role in controlling motility, suggesting that cells are able to dynamically exploit the compartmentalization of this metabolism to adapt their metabolic needs to different cell functions (movement vs. proliferation). We propose a model to explain the relevance of serine/glycine metabolism in the preferential colonization of the brain by LUAD cells and suggest that the inhibition of serine/glycine uptake and/or cytosolic SHMT1 might represent a successful strategy to limit the formation of brain metastasis from primary tumors, a major cause of death in these patients.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenilato Quinasa/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Adenocarcinoma del Pulmón/patología , Movimiento Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...