Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Microbiol ; : 104169, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37977353

RESUMEN

Enterococcus faecalis is a Gram-positive clinical pathogen causing severe infections. Its survival during infection depends on its ability to utilize host-derived metabolites, such as protein-deglycosylation products. We have identified in E. faecalis OG1RF a locus (ega) involved in the catabolism of the glycoamino acid N-acetylglucosamine-L-asparagine. This locus is separated into two transcription units, genes egaRP and egaGBCD1D2, respectively. RT-qPCR experiments revealed that the expression of the ega locus is regulated by the transcriptional repressor EgaR. Electromobility shift assays evidenced that N-acetylglucosamine-L-asparagine interacts directly with the EgaR protein, which leads to the transcription of the ega genes. Growth studies with egaG, egaB and egaC mutants confirmed that the encoded proteins are necessary for N-acetylglucosamine-L-asparagine catabolism. This glycoamino acid is transported and phosphorylated by a specific phosphotransferase system EIIABC components (OG1RF_10751, EgaB, EgaC) and subsequently hydrolyzed by the glycosylasparaginase EgaG, which generates aspartate and 6-P-N-acetyl-ß-d-glucosaminylamine. The latter can be used as a fermentable carbon source by E. faecalis. Moreover, Galleria mellonella larvae had a significantly higher survival rate when infected with ega mutants compared to the wild-type strain, suggesting that the loss of N-acetylglucosamine-L-asparagine utilization affects enterococcal virulence.

2.
Res Microbiol ; 173(8): 103982, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35931249

RESUMEN

In this work, the physiological roles of the primary peroxide scavenging activities of Enterococcus faecium AUS0004 strain were analysed. This healthcare-associated pathogen harbours genes encoding putative NADH peroxidase (Npr), alkyl hydroperoxide reductase (AhpCF), glutathione peroxidase (Gpx) and manganese-dependent catalase (Mn-Kat). Gene expression analyses showed that npr and kat genes are especially and significantly induced in cells treated with hydrogen peroxide (H2O2) and cumene hydroperoxide (CuOOH), which suggested an important function of these enzymes to protect E. faecium against peroxide stress. Mutants affected in one or several predicted anti-oxidative activities mentioned above showed that neither the peroxidases nor the catalase are implicated in the defence against peroxide challenges. However, our investigations allowed us to show that Npr is responsible for the degradation of approximately 45% of metabolically derived H2O2 which avoids accumulation of the peroxide to lethal concentrations.


Asunto(s)
Enterococcus faecium , Glutatión Peroxidasa , Catalasa/genética , Enterococcus faecium/genética , Peróxidos , Peróxido de Hidrógeno/farmacología , Peroxidasas
3.
Res Microbiol ; 172(6): 103876, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34474124

RESUMEN

The manganese superoxide dismutase (SodA) of E. faecium strain AUS0004 has been characterised. It is most closely related to Enterococcus hirae, Enterococcus durans, Enterococcus villorium, and Enterococcus mundtii with 100%, 91,55%, 90,85%, and 90,58% homology, respectively, but more distant from SodA of E. faecalis (81.68%). A sodA deletion mutant has been constructed. Compared to the parental strain, the ΔsodA mutant was affected in aerobic growth and more sensitive to hydrogen peroxide (H2O2), cumene hydroperoxide (CuOOH), and the superoxide anion (O2•-) generator menadione. The E. faecium strain AUS0004 is part of those bacteria accumulating H2O2 to high concentrations (around 5 mM) starting from late exponential growth phase. Accumulation of the peroxide was around 25% less in the mutant suggesting that this part of H2O2 is due to the dismutation of O2•- by SodA. The sodA gene of E. faecium AUS0004 was induced by oxygen, peroxides and menadione but the corresponding regulator remains hitherto unknown. Finally, we showed that SodA activity is important for virulence in the Galleria mellonella model.


Asunto(s)
Proteínas Bacterianas/metabolismo , Enterococcus faecium/enzimología , Superóxido Dismutasa/metabolismo , Aerobiosis , Animales , Antioxidantes/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Derivados del Benceno/farmacología , Enterococcus faecium/crecimiento & desarrollo , Enterococcus faecium/patogenicidad , Inducción Enzimática , Genoma Bacteriano , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Mariposas Nocturnas/microbiología , Estrés Oxidativo , Filogenia , Superóxido Dismutasa/química , Superóxido Dismutasa/genética , Superóxidos/metabolismo , Superóxidos/farmacología , Virulencia
4.
FEMS Microbiol Lett ; 368(8)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33864460

RESUMEN

Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase. In both cases, dihydroxyacetone phosphate is the product. Genomic analysis showed that Enterococcus faecium harbors numerous genes annotated to encode activities for the two pathways. However, our physiological analyses of growth on glycerol showed that dissimilation is limited to aerobic conditions and that despite the presence of genes encoding presumed GlyP dehydrogenases, the GlyP oxidase is essential in this process. Although E. faecium contains an operon encoding the phosphotransfer protein DhaM and DHA kinase, which are required for DHA phosphorylation, it is unable to grow on DHA. This operon is highly expressed in stationary phase but its physiological role remains unknown. Finally, data obtained from sequencing of a transposon mutant bank of E. faecium grown on BHI revealed that the GlyP dehydrogenases and a major intrinsic family protein have important but hitherto unknown physiological functions.


Asunto(s)
Dihidroxiacetona/metabolismo , Enterococcus faecium/enzimología , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus faecium/genética , Glicerolfosfato Deshidrogenasa/genética , Operón
5.
Sci Rep ; 9(1): 20203, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882963

RESUMEN

Microbial endocrinology has demonstrated for more than two decades, that eukaryotic substances (hormones, neurotransmitters, molecules of the immune system) can modulate the physiological behavior of bacteria. Among them, the hormones/neurotransmitters, epinephrine (Epi) and norepinephrine (NE), released in case of stress, physical effort or used in medical treatment, were shown to be able to modify biofilm formation in various bacterial species. In the present study, we have evaluated the effect of Epi on motility, adhesion, biofilm formation and virulence of Pseudomonas aeruginosa, a bacterium linked to many hospital-acquired infections, and responsible for chronic infection in immunocompromised patients including persons suffering from cystic fibrosis. The results showed that Epi increased adhesion and biofilm formation of P. aeruginosa, as well as its virulence towards the Galleria mellonella larvae in vivo model. Deciphering the sensor of this molecule in P. aeruginosa and the molecular mechanisms involved may help to find new strategies of treatment to fight against this bacterium.


Asunto(s)
Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Epinefrina/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Virulencia/efectos de los fármacos , Línea Celular , Humanos , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/fisiología
6.
Front Microbiol ; 10: 881, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105672

RESUMEN

Lactic acid bacteria (LAB) strains OB14 and OB15 were isolated from traditional Tunisian fermented dairy products, Testouri cheese and Rigouta, respectively. They were identified as Enterococcus faecalis by the MALDI TOF-MS (matrix assisted laser desorption-ionization time of flight mass spectrometry) biotyper system and molecular assays (species-specific PCR). These new isolates were evaluated for probiotic properties, compared to E. faecalis Symbioflor 1 clone DSM 16431, as reference. The bacteria were found to be tolerant to the harsh conditions of the gastrointestinal tract (acidity and bile salt). They were low to moderate biofilm producers, can adhere to Caco-2/TC7 intestinal cells and strengthen the intestinal barrier through the increase of the transepithelial electrical resistance (TER). Susceptibility to ampicillin, vancomycin, gentamicin and erythromycin has been tested using the broth microdilutions method. The results demonstrated that E. faecalis OB14 and OB15 were sensitive to the clinically important ampicillin (MIC = 1 µg/mL) and vancomycin (MIC = 2 µg/mL) antibiotics. However, Whole Genome Sequencing (WGS) showed the presence of tetracycline resistance and cytolysin genes in E. faecalis OB14, and this led to high mortality of Galleria Mellonella larvae in the virulence test. Hierarchical cluster analysis by MALDI TOF-MS biotyper showed that E. faecalis OB15 was closely related to the E. faecalis Symbioflor 1 probiotic strain than to OB14, and this has been confirmed by WGS using the average nucleotide identity (ANI) and Genome-to-Genome Hybridization similarity methods. According to these results, E. faecalis OB15 seems to be reliable for future development as probiotic, in food or feed industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...