Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38069375

RESUMEN

This study presents an in vitro analysis of the bactericidal and cytotoxic properties of hybrid films containing nickel oxide (NiO) and nickel ferrite (NiFe2O4) nanoparticles embedded in polypropylene (PP). The solvent casting method was used to synthesize films of PP, PP@NiO, and PP@NiFe2O4, which were characterized by different spectroscopic and microscopic techniques. The X-ray diffraction (XRD) patterns confirmed that the small crystallite sizes of NiO and NiFe2O4 NPs were maintained even after they were incorporated into the PP matrix. From the Raman scattering spectroscopy data, it was evident that there was a significant interaction between the NPs and the PP matrix. Additionally, the Scanning Electron Microscopy (SEM) analysis revealed a homogeneous dispersion of NiO and NiFe2O4 NPs throughout the PP matrix. The incorporation of the NPs was observed to alter the surface roughness of the films; this behavior was studied by atomic force microscopy (AFM). The antibacterial properties of all films were evaluated against Pseudomonas aeruginosa (ATCC®: 43636™) and Staphylococcus aureus (ATCC®: 23235™), two opportunistic and nosocomial pathogens. The PP@NiO and PP@ NiFe2O4 films showed over 90% bacterial growth inhibition for both strains. Additionally, the effects of the films on human skin cells, such as epidermal keratinocytes and dermal fibroblasts, were evaluated for cytotoxicity. The PP, PP@NiO, and PP@NiFe2O4 films were nontoxic to human keratinocytes. Furthermore, compared to the PP film, improved biocompatibility of the PP@NiFe2O4 film with human fibroblasts was observed. The methodology utilized in this study allows for the production of hybrid films that can inhibit the growth of Gram-positive bacteria, such as S. aureus, and Gram-negative bacteria, such as P. aeruginosa. These films have potential as coating materials to prevent bacterial proliferation on surfaces.


Asunto(s)
Nanopartículas , Polipropilenos , Humanos , Polipropilenos/química , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas/química
2.
Nanomaterials (Basel) ; 13(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177070

RESUMEN

Hybrid films for applications in organic electronics from NiFe2O4 nanoparticles (NPs) in poly(3,4 ethylene dioxythiophene), poly(4-styrenesulfonate) (PEDOT:PSS), and poly(methyl methacrylate) (PMMA) were fabricated by the spin-coating technique. The films were characterized by infrared spectroscopy, atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy to subsequently determine their optical parameters. The electronic transport of the hybrid films was determined in bulk heterojunction devices. The presence of NiFe2O4 NPs reinforces mechanical properties and increases transmittance in the hybrid films; the PEDOT:PSS-NiFe2O4 NPs film is the one that has a maximum stress of 28 MPa and a Knoop hardness of 0.103, while the PMMA-NiFe2O4 NPs film has the highest transmittance of (87%). The Tauc band gap is in the range of 3.78-3.9 eV, and the Urbach energy is in the range of 0.24-0.33 eV. Regarding electrical behavior, the main effect is exerted by the matrix, although the current carried is of the same order of magnitude for the two devices: glass/ITO/polymer-NiFe2O4 NPs/Ag. NiFe2O4 NPs enhance the mechanical, optical, and electrical behavior of the hybrid films and can be used as semi-transparent anodes and as active layers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...