Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 92(2): e0031823, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38189339

RESUMEN

Inflammation has a pronounced impact on the intestinal ecosystem by driving an expansion of facultative anaerobic bacteria at the cost of obligate anaerobic microbiota. This pathogen "blooming" is also a hallmark of enteric Salmonella enterica serovar Typhimurium (S. Tm) infection. Here, we analyzed the contribution of bacterial and host factors to S. Tm "blooming" in a gnotobiotic mouse model for S. Tm-induced enterocolitis. Mice colonized with the Oligo-Mouse-Microbiota (OMM12), a minimal bacterial community, develop fulminant colitis by day 4 after oral infection with wild-type S. Tm but not with an avirulent mutant. Inflammation leads to a pronounced reduction in overall intestinal bacterial loads, distinct microbial community shifts, and pathogen blooming (relative abundance >50%). S. Tm mutants attenuated in inducing gut inflammation generally elicit less pronounced microbiota shifts and reduction in total bacterial loads. In contrast, S. Tm mutants in nitrate respiration, salmochelin production, and ethanolamine utilization induced strong inflammation and S. Tm "blooming." Therefore, individual Salmonella-specific inflammation-fitness factors seem to be of minor importance for competition against this minimal microbiota in the inflamed gut. Finally, we show that antibody-mediated neutrophil depletion normalized gut microbiota loads but not intestinal inflammation or microbiota shifts. This suggests that neutrophils equally reduce pathogen and commensal bacterial loads in the inflamed gut.


Asunto(s)
Enterocolitis , Microbiota , Salmonelosis Animal , Ratones , Animales , Salmonella typhimurium , Serogrupo , Bacterias , Inflamación , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Salmonelosis Animal/microbiología
2.
PLoS Pathog ; 19(8): e1011600, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37603558

RESUMEN

Gut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host. However, the functional role of phages within the gastrointestinal microbiome remain poorly understood. Here, we investigated the effects of microbiota-directed phages on infection with the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm), using a gnotobiotic mouse model (OMM14) for colonization resistance (CR). We show, that phage cocktails targeting Escherichia coli and Enterococcus faecalis acted in a strain-specific manner. They transiently reduced the population density of their respective target before establishing coexistence for up to 9 days. Infection susceptibility to S. Tm was markedly increased at an early time point after challenge with both phage cocktails. Surprisingly, OMM14 mice were also susceptible 7 days after a single phage inoculation, when the targeted bacterial populations were back to pre-phage administration density. Concluding, our work shows that phages that dynamically modulate the density of protective members of the gut microbiota can provide opportunities for invasion of bacterial pathogens, in particular at early time points after phage application. This suggests, that phages targeting protective members of the microbiota may increase the risk for Salmonella infection.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Infecciones por Salmonella , Humanos , Animales , Ratones , Salmonella typhimurium , Escherichia coli
3.
Nat Commun ; 14(1): 4780, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553336

RESUMEN

A challenging task to understand health and disease-related microbiome signatures is to move beyond descriptive community-level profiling towards disentangling microbial interaction networks. Using a synthetic gut bacterial community, we aimed to study the role of individual members in community assembly, identify putative keystone species and test their influence across different environments. Single-species dropout experiments reveal that bacterial strain relationships strongly vary not only in different regions of the murine gut, but also across several standard culture media. Mechanisms involved in environment-dependent keystone functions in vitro include exclusive access to polysaccharides as well as bacteriocin production. Further, Bacteroides caecimuris and Blautia coccoides are found to play keystone roles in gnotobiotic mice by impacting community composition, the metabolic landscape and inflammatory responses. In summary, the presented study highlights the strong interdependency between bacterial community ecology and the biotic and abiotic environment. These results question the concept of universally valid keystone species in the gastrointestinal ecosystem and underline the context-dependency of both, keystone functions and bacterial interaction networks.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Ecología , Tracto Gastrointestinal/microbiología , Interacciones Microbianas , Bacterias/genética
4.
Cell Host Microbe ; 31(6): 1007-1020.e4, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37279755

RESUMEN

Bacteria can evolve to withstand a wide range of antibiotics (ABs) by using various resistance mechanisms. How ABs affect the ecology of the gut microbiome is still poorly understood. We investigated strain-specific responses and evolution during repeated AB perturbations by three clinically relevant ABs, using gnotobiotic mice colonized with a synthetic bacterial community (oligo-mouse-microbiota). Over 80 days, we observed resilience effects at the strain and community levels, and we found that they were correlated with modulations of the estimated growth rate and levels of prophage induction as determined from metagenomics data. Moreover, we tracked mutational changes in the bacterial populations, and this uncovered clonal expansion and contraction of haplotypes and selection of putative AB resistance-conferring SNPs. We functionally verified these mutations via reisolation of clones with increased minimum inhibitory concentration (MIC) of ciprofloxacin and tetracycline from evolved communities. This demonstrates that host-associated microbial communities employ various mechanisms to respond to selective pressures that maintain community stability.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Bacterias/genética , Vida Libre de Gérmenes
5.
Cell Chem Biol ; 30(5): 499-512.e5, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37100053

RESUMEN

Respiratory complex I is a multicomponent enzyme conserved between eukaryotic cells and many bacteria, which couples oxidation of electron donors and quinone reduction with proton pumping. Here, we report that protein transport via the Cag type IV secretion system, a major virulence factor of the Gram-negative bacterial pathogen Helicobacter pylori, is efficiently impeded by respiratory inhibition. Mitochondrial complex I inhibitors, including well-established insecticidal compounds, selectively kill H. pylori, while other Gram-negative or Gram-positive bacteria, such as the close relative Campylobacter jejuni or representative gut microbiota species, are not affected. Using a combination of different phenotypic assays, selection of resistance-inducing mutations, and molecular modeling approaches, we demonstrate that the unique composition of the H. pylori complex I quinone-binding pocket is the basis for this hypersensitivity. Comprehensive targeted mutagenesis and compound optimization studies highlight the potential to develop complex I inhibitors as narrow-spectrum antimicrobial agents against this pathogen.


Asunto(s)
Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Mutagénesis , Mutación , Oxidación-Reducción , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
6.
Curr Protoc ; 2(9): e548, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36094300

RESUMEN

The oligo-mouse-microbiota (OMM12 ) is a widely used syncom that colonizes gnotobiotic mice in a stable manner. It provides several fundamental functions to its murine host, including colonization resistance against enteric pathogens. Here, we designed and validated specific fluorescence in situ hybridization (FISH) probes to detect and quantify OMM12 strains on intestinal tissue cross sections. 16S rRNA-specific probes were designed, and specificity was validated on fixed pure cultures. A hybridization protocol was optimized for sensitive detection of the individual bacterial cells in cryosections. Using this method, we showed that the intestinal mucosal niche of Akkermansia muciniphila can be influenced by global gut microbial community context. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Localization and quantification of OMM12 single strains in mouse cecum cross section Support Protocol: Establishment of specific FISH probe set for OMM12 syncom.


Asunto(s)
Microbiota , Animales , Hibridación Fluorescente in Situ/métodos , Ratones , Sondas de Oligonucleótidos , ARN Ribosómico 16S/genética
7.
Cell Host Microbe ; 29(11): 1680-1692.e7, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34610296

RESUMEN

The composition of intrinsic microbial communities determines if invading pathogens will find a suitable niche for colonization and cause infection or be eliminated. Here, we investigate how commensal E. coli mediate colonization resistance (CR) against Salmonella Typhimurium (S. Tm). Using synthetic bacterial communities, we show that the capacity of E. coli Mt1B1 to block S. Tm colonization depends on the microbial context. In an infection-permissive context, E. coli utilized a high diversity of carbon sources and was unable to block S. Tm invasion. In mice that were stably colonized by twelve phylogenetically diverse murine gut bacteria (OMM12), establishing a protective context, E. coli depleted galactitol, a substrate otherwise fueling S. Tm colonization. Here, Lachnospiraceae, capable of consuming C5 and C6 sugars, critically contributed to CR. We propose that E. coli provides CR by depleting a limited carbon source when in a microbial community adept at removing simple sugars from the intestine.


Asunto(s)
Microbiota , Salmonella typhimurium , Animales , Carbono , Escherichia coli , Galactitol , Ratones , Salmonella typhimurium/genética
8.
Gut Microbes ; 13(1): 1-20, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33550886

RESUMEN

Gut microbiota and the immune system are in constant exchange shaping both host immunity and microbial communities. Here, improper immune regulation can cause inflammatory bowel disease (IBD) and colitis. Antibody therapies blocking signaling through the CD40-CD40L axis showed promising results as these molecules are deregulated in certain IBD patients. To better understand the mechanism, we used transgenic DC-LMP1/CD40 animals with a constitutive CD40-signal in CD11c+ cells, causing a lack of intestinal CD103+ dendritic cells (DCs) and failure to induce regulatory T (iTreg) cells. These mice rapidly develop spontaneous fatal colitis, accompanied by dysbiosis and increased inflammatory IL-17+IFN-γ+ Th17/Th1 and IFN-γ + Th1 cells. In the present study, we analyzed the impact of the microbiota on disease development and detected elevated IgA- and IgG-levels in sera from DC-LMP1/CD40 animals. Their serum antibodies specifically bound intestinal bacteria, and by proteome analysis, we identified a 60 kDa chaperonin GroEL (Hsp60) from Helicobacter hepaticus (Hh) as the main specific antigen targeted in the absence of iTregs. When re-derived to a different Hh-free specific-pathogen-free (SPF) microbiota, mice showed few signs of disease, normal microbiota, and no fatality. Upon recolonization of mice with Hh, the disease developed rapidly. Thus, the present work identifies GroEL/Hsp60 as a major Hh-antigen and its role in disease onset, progression, and outcome in this colitis model. Our results highlight the importance of CD103+ DC- and iTreg-mediated immune tolerance to specific pathobionts to maintain healthy intestinal balance.


Asunto(s)
Chaperonina 60/inmunología , Colitis/microbiología , Helicobacter hepaticus/patogenicidad , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/inmunología , Antígenos CD/inmunología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular , Colitis/inmunología , Células Dendríticas/inmunología , Helicobacter hepaticus/inmunología , Cadenas alfa de Integrinas/inmunología , Intestinos/inmunología , Intestinos/microbiología , Ratones , Ratones Transgénicos , Organismos Libres de Patógenos Específicos , Linfocitos T Reguladores/inmunología
9.
PLoS One ; 14(4): e0215428, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30986251

RESUMEN

OBJECTIVES: Large-scale clinical studies investigating associations between intestinal microbiota signatures and human diseases usually rely on stool samples. However, the timing of repeated stool sample collection cannot be predefined in longitudinal settings. Rectal swabs, being straightforward to obtain, have the potential to overcome this drawback. Therefore, we assessed the usability of rectal swabs for microbiome sampling in a cohort of hematological and oncological patients. STUDY DESIGN: We used a pipeline for intestinal microbiota analysis from deep rectal swabs which was established and validated with test samples and negative controls. Consecutively, a cohort of patients from hematology and oncology wards was established and weekly deep rectal swabs taken during their admissions and re-admissions. RESULTS: Validation of our newly developed pipeline for intestinal microbiota analysis from rectal swabs revealed consistent and reproducible results. Over a period of nine months, 418 rectal swabs were collected longitudinally from 41 patients. Adherence to the intended sampling protocol was 97%. After DNA extraction, sequencing, read pre-processing and filtering of chimeric sequences, 405 of 418 samples (96.9%) were eligible for further analyses. Follow-up samples and those taken under current antibiotic exposure showed a significant decrease in alpha diversity as compared to baseline samples. Microbial domination occurred most frequently by Enterococcaceae (99 samples, 24.4%) on family level and Enterococcus (90 samples, 22.2%) on genus level. Furthermore, we noticed a high abundance of potential skin commensals in 99 samples (24.4%). SUMMARY: Deep rectal swabs were shown to be reliable for microbiome sampling and analysis, with practical advantages related to high sampling adherence, easy timing, transport and storage. The relatively high abundance of putative skin commensals in this patient cohort may be of potential interest and should be further investigated. Generally, previous findings on alpha diversity dynamics obtained from stool samples were confirmed.


Asunto(s)
Enterobacteriaceae , Enterococcus , Heces/microbiología , Microbioma Gastrointestinal , Neoplasias Hematológicas/microbiología , Manejo de Especímenes , Estudios de Cohortes , Enterobacteriaceae/clasificación , Enterobacteriaceae/crecimiento & desarrollo , Enterococcus/clasificación , Enterococcus/genética , Femenino , Humanos , Masculino
10.
Cell Host Microbe ; 25(5): 681-694.e8, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31006637

RESUMEN

The microbiota and the gastrointestinal mucus layer play a pivotal role in protection against non-typhoidal Salmonella enterica serovar Typhimurium (S. Tm) colitis. Here, we analyzed the course of Salmonella colitis in mice lacking a functional mucus layer in the gut. Unexpectedly, in contrast to mucus-proficient littermates, genetically deficient mice were protected against Salmonella-induced gut inflammation in the streptomycin colitis model. This correlated with microbiota alterations and enrichment of the bacterial phylum Deferribacteres. Using gnotobiotic mice associated with defined bacterial consortia, we causally linked Mucispirillum schaedleri, currently the sole known representative of Deferribacteres present in the mammalian microbiota, to host protection against S. Tm colitis. Inhibition by M. schaedleri involves interference with S. Tm invasion gene expression, partly by competing for anaerobic electron acceptors. In conclusion, this study establishes M. schaedleri, a core member of the murine gut microbiota, as a key antagonist of S. Tm virulence in the gut.


Asunto(s)
Antibiosis , Bacterias Anaerobias/crecimiento & desarrollo , Colitis/prevención & control , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/crecimiento & desarrollo , Animales , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Ratones
11.
Front Microbiol ; 10: 2999, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998276

RESUMEN

The Oligo-Mouse-Microbiota (OMM12) is a recently developed synthetic bacterial community for functional microbiome research in mouse models (Brugiroux et al., 2016). To date, the OMM12 model has been established in several germ-free mouse facilities world-wide and is employed to address a growing variety of research questions related to infection biology, mucosal immunology, microbial ecology and host-microbiome metabolic cross-talk. The OMM12 consists of 12 sequenced and publically available strains isolated from mice, representing five bacterial phyla that are naturally abundant in the murine gastrointestinal tract (Lagkouvardos et al., 2016). Under germ-free conditions, the OMM12 colonizes mice stably over multiple generations. Here, we investigated whether stably colonized OMM12 mouse lines could be reproducibly established in different animal facilities. Germ-free C57Bl/6J mice were inoculated with a frozen mixture of the OMM12 strains. Within 2 weeks after application, the OMM12 community reached the same stable composition in all facilities, as determined by fecal microbiome analysis. We show that a second application of the OMM12 strains after 72 h leads to a more stable community composition than a single application. The availability of such protocols for reliable de novo generation of gnotobiotic rodents will certainly contribute to increasing experimental reproducibility in biomedical research.

12.
Nat Microbiol ; 2: 16215, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27869789

RESUMEN

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM12), representing members of the major bacterial phyla in the murine gut, was selected. This community was stable over consecutive mouse generations and provided colonization resistance against S. Tm infection, albeit not to the degree of a conventional complex microbiota. Comparative (meta)genome analyses identified functions represented in a conventional microbiome but absent from the Oligo-MM12. By genome-informed design, we created an improved version of the Oligo-MM community harbouring three facultative anaerobic bacteria from the mouse intestinal bacterial collection (miBC) that provided conventional-like colonization resistance. In conclusion, we have established a highly versatile experimental system that showed efficacy in an enteric infection model. Thus, in combination with exhaustive bacterial strain collections and systems-based approaches, genome-guided design can be used to generate insights into microbe-microbe and microbe-host interactions for the investigation of ecological and disease-relevant mechanisms in the intestine.


Asunto(s)
Antibiosis , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Salmonelosis Animal/prevención & control , Salmonella typhimurium/fisiología , Animales , Ratones
13.
Environ Microbiol ; 18(5): 1591-603, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26439675

RESUMEN

Bacteria employ bacteriocins for interference competition in microbial ecosystems. Colicin Ib (ColIb), a pore-forming bacteriocin, confers a significant fitness benefit to Salmonella enterica serovar Typhimurium (S. Tm) in competition against commensal Escherichia coli in the gut. ColIb is released from S. Tm into the environment, where it kills susceptible competitors. However, colicin-specific release proteins, as they are known for other colicins, have not been identified in case of ColIb. Thus, its release mechanism has remained unclear. In the current study, we have established a new link between ColIb release and lysis activity of temperate, lambdoid phages. By the use of phage-cured S. Tm mutant strains, we show that the presence of temperate phages and their lysis genes is necessary and sufficient for release of active ColIb into the culture supernatant. Furthermore, phage-mediated lysis significantly enhanced S. Tm fitness in competition against a ColIb-susceptible competitor. Finally, transduction with the lambdoid phage 933W rescued the defect of E. coli strain MG1655 with respect to ColIb release. In conclusion, ColIb is released from bacteria in the course of phage lysis. Our data reveal a new mechanism for colicin release and point out a novel function of temperate phages in enhancing colicin-dependent bacterial fitness.


Asunto(s)
Bacteriófagos/fisiología , Colicinas/metabolismo , Aptitud Genética , Salmonella typhimurium/virología , Colicinas/genética , Escherichia coli/genética , Escherichia coli/virología , Regulación Bacteriana de la Expresión Génica/fisiología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Serogrupo
14.
PLoS Pathog ; 10(1): e1003844, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24391500

RESUMEN

The host's immune system plays a key role in modulating growth of pathogens and the intestinal microbiota in the gut. In particular, inflammatory bowel disorders and pathogen infections induce shifts of the resident commensal microbiota which can result in overgrowth of Enterobacteriaceae ("inflammation-inflicted blooms"). Here, we investigated competition of the human pathogenic Salmonella enterica serovar Typhimurium strain SL1344 (S. Tm) and commensal E. coli in inflammation-inflicted blooms. S. Tm produces colicin Ib (ColIb), which is a narrow-spectrum protein toxin active against related Enterobacteriaceae. Production of ColIb conferred a competitive advantage to S. Tm over sensitive E. coli strains in the inflamed gut. In contrast, an avirulent S. Tm mutant strain defective in triggering gut inflammation did not benefit from ColIb. Expression of ColIb (cib) is regulated by iron limitation and the SOS response. CirA, the cognate outer membrane receptor of ColIb on colicin-sensitive E. coli, is induced upon iron limitation. We demonstrate that growth in inflammation-induced blooms favours expression of both S. Tm ColIb and the receptor CirA, thereby fuelling ColIb dependent competition of S. Tm and commensal E. coli in the gut. In conclusion, this study uncovers a so-far unappreciated role of inflammation-inflicted blooms as an environment favouring ColIb-dependent competition of pathogenic and commensal representatives of the Enterobacteriaceae family.


Asunto(s)
Colicinas/metabolismo , Escherichia coli/metabolismo , Intestinos/microbiología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Animales , Colicinas/genética , Humanos , Hierro/metabolismo , Ratones , Respuesta SOS en Genética/fisiología , Infecciones por Salmonella/genética , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...