Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 32(7): 1648-1658, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-33656859

RESUMEN

Electrospray ion beam deposition (ES-IBD) or ion soft landing has been demonstrated as a technique suitable for processing nonvolatile molecules in vacuum under perfectly controlled conditions, an approach also desirable for the deposition of nanoparticles. Here, we present results from several approaches to generate, characterize, and deposit nanoparticle ion beams in vacuum for deposition. We focus on cluster ion beams generated by ESI of organic salt solutions. Small cluster ions of the salts appear in the mass spectra as defined peaks. In addition, we find nanoparticle-sized aggregates, appearing as a low intensity background at high m/z-ratio, and show by IBD experiments that these clusters carry the major amount of material in the ion beam. This transition from clusters to nanoparticles, and their successful deposition, shows that ES-IBD can in principle handle ion beams of very heavy and highly charged nanoparticles. In related experiments, however, we found the deposition of nanoparticles from dispersions to be of low reproducibility, due to the lack of control by mass spectrometry.

2.
Phys Rev Lett ; 126(5): 056001, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33605738

RESUMEN

Using electrospray ion beam deposition, we collide the complex molecule Reichardt's dye (C_{41}H_{30}NO^{+}) at low, hyperthermal translational energy (2-50 eV) with a Cu(100) surface and image the outcome at single-molecule level by scanning tunneling microscopy. We observe bond-selective reaction induced by the translational kinetic energy. The collision impulse compresses the molecule and bends specific bonds, prompting them to react selectively. This dynamics drives the system to seek thermally inaccessible reactive pathways, since the compression timescale (subpicosecond) is much shorter than the thermalization timescale (nanosecond), thereby yielding reaction products that are unobtainable thermally.

3.
Anal Chem ; 90(5): 3328-3334, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29376333

RESUMEN

Desorption/ionization induced by neutral SO2 clusters (DINeC) is used for mass spectrometry (MS) of surface-adsorbed molecules. The method is shown to be a surface-sensitive analysis tool capable of detecting molecular adsorbates in a wide range of molecular weights as well as their reactions on surfaces, which are otherwise difficult to access. Two different surface/adsorbate systems prepared by means of electrospray ion beam deposition (ES-IBD) were investigated: For the peptide angiotensin II on gold, intact molecules were desorbed from the surface when deposited by soft landing ES-IBD. By comparison to the well-controlled amount of substance deposited by ES-IBD, the sensitivity of DINeC-MS was shown to be on the order of 0.1% of a monolayer coverage, corresponding to femtomoles of analyte. Depending on deposition and sample conditions, the original state of charge of the molecules could be retrieved. Reaction of the adsorbed molecules both with surface atoms as well as with coadsorbed D2O was monitored. Rhodamine 6G was also desorbed as an intact molecule when deposited with kinetic energies below 50 eV. For higher deposition energy, fragmentation of the dye molecules was observed by means of DINeC-MS.

4.
ACS Nano ; 11(3): 2420-2427, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28122181

RESUMEN

Herein we report the fabrication of molecular nanostructures on surfaces via two-dimensional (2D) folding of the nine amino acid peptide bradykinin. Soft-landing electrospray ion beam deposition in conjunction with high-resolution imaging by scanning tunneling microscopy is used to fabricate and investigate the molecular nanostructures. Subnanometer resolved images evidence the large conformational freedom of the molecules if thermal motion is inhibited and the formation of stable uniform dimers of only one specific conformation when diffusion can take place. Molecular dynamics modeling supported by density functional theory calculations give atomically precise insight into the induced-fit binding scheme when the folded dimer is formed. In the absence of solvent, we find a hierarchy of binding strength from polar to nonpolar, manifested in an inverted polar-nonpolar segregation which suppresses unspecific interactions at the rim of the nanostructure. The demonstrated 2D-folding scheme resembles many key properties of its native 3D counterpart and shows that functional, molecular nanostructures on surfaces fabricated by folding could be just as versatile and specific.


Asunto(s)
Bradiquinina/química , Nanoestructuras/química , Difusión , Modelos Moleculares , Pliegue de Proteína , Teoría Cuántica , Propiedades de Superficie
5.
Nano Lett ; 14(10): 5609-15, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25198655

RESUMEN

The physical and chemical properties of macromolecules like proteins are strongly dependent on their conformation. The degrees of freedom of their chemical bonds generate a huge conformational space, of which, however, only a small fraction is accessible in thermal equilibrium. Here we show that soft-landing electrospray ion beam deposition (ES-IBD) of unfolded proteins allows to control their conformation. The dynamics and result of the deposition process can be actively steered by selecting the molecular ion beam's charge state or tuning the incident energy. Using these parameters, protein conformations ranging from fully extended to completely compact can be prepared selectively on a surface, as evidenced on the subnanometer/amino acid resolution level by scanning tunneling microscopy (STM). Supported by molecular dynamics (MD) simulations, our results demonstrate that the final conformation on the surface is reached through a mechanical deformation during the hyperthermal ion surface collision. Our experimental results independently confirm the findings of ion mobility spectrometry (IMS) studies of protein gas phase conformations. Moreover, we establish a new route for the processing of macromolecular materials, with the potential to reach conformations that would be inaccessible otherwise.

6.
J Am Chem Soc ; 136(39): 13482-5, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25185758

RESUMEN

Chemical functionalization of graphene is achieved by hyperthermal reaction with azopyridine molecular ions. The one-step, room temperature process takes place in high vacuum (10(-7) mbar) using an electrospray ion beam deposition (ES-IBD) setup. For ion surface collisions exceeding a threshold kinetic energy of 165 eV, molecular cation beams of 4,4'-azobis(pyridine) covalently attach to chemical vapor deposited (CVD) graphene. A covalent functionalization degree of 3% of the carbon atoms of graphene is reached after 3-5 h of ion exposure of 2 × 10(14) azopyridinium/cm(2) of which 50% bind covalently. This facile approach for the controlled modification of graphene extends the scope of candidate species that would not otherwise react via existing conventional methods.

7.
Nano Lett ; 14(2): 563-9, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24471471

RESUMEN

Dye-sensitized solar cells constitute a promising approach to sustainable and low-cost solar energy conversion. Their overall efficiency crucially depends on the effective coupling of the photosensitizers to the photoelectrode and the details of the dye's energy levels at the interface. Despite great efforts, the specific binding of prototypical ruthenium-based dyes to TiO2, their potential supramolecular interaction, and the interrelation between adsorption geometry and electron injection efficiency lack experimental evidence. Here we demonstrate multiconformational adsorption and energy level alignment of single N3 dyes on TiO2 anatase (101) revealed by scanning tunnelling microscopy and spectroscopy. The distinctly bound molecules show significant variations of their excited state levels associated with different driving forces for photoelectron injection. These findings emphasize the critical role of the interfacial coupling and suggest that further designs of dye-sensitized solar cells should target a higher selectivity in the dye-substrate binding conformations in order to ensure efficient electron injection from all photosensitizers.

8.
Adv Mater ; 24(20): 2761-7, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22517313

RESUMEN

Crystalline inverted membranes of the nonvolatile surfactant sodium dodecylsulfate are found on solid surfaces after electrospray ion beam deposition (ES-IBD) of large SDS clusters in vacuum. This demonstrates the equivalence of ES-IBD to conventional molecular beam epitaxy.


Asunto(s)
Membranas Artificiales , Cristalización , Grafito/química , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Microscopía de Fuerza Atómica , Dodecil Sulfato de Sodio/química , Propiedades de Superficie , Vacio
9.
Nano Lett ; 12(5): 2452-8, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22530980

RESUMEN

Imaging of individual protein molecules at the single amino acid level has so far not been possible due to the incompatibility of proteins with the vacuum environment necessary for high-resolution scanning probe microscopy. Here we demonstrate electrospray ion beam deposition of selectively folded and unfolded cytochrome c protein ions on atomically defined solid surfaces in ultrahigh vacuum (10(-10) mbar) and achieve unprecedented resolution with scanning tunneling microscopy. On the surface folded proteins are found to retain their three-dimensional structure. Unfolded proteins are observed as extended polymer strands displaying submolecular features with resolution at the amino acid level. On weakly interacting surfaces, unfolded proteins refold into flat, irregular patches composed of individual molecules. This suggests the possibility of two-dimensionally confined folding of peptides of an appropriate sequence into regular two-dimensional structures as a new approach toward functional molecular surface coatings.


Asunto(s)
Citocromos c/metabolismo , Citocromos c/química , Microscopía de Sonda de Barrido , Pliegue de Proteína , Espectrometría de Masa por Ionización de Electrospray
10.
Nano Lett ; 12(1): 518-21, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22181658

RESUMEN

The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support.


Asunto(s)
Acetatos/química , Imanes , Manganeso/química , Nanoestructuras/química , Nanoestructuras/ultraestructura , Sustancias Macromoleculares/química , Campos Magnéticos , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...