Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(22): 222502, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101341

RESUMEN

Collinear laser spectroscopy was performed on the isomer of the aluminium isotope ^{26m}Al. The measured isotope shift to ^{27}Al in the 3s^{2}3p ^{2}P_{3/2}^{○}→3s^{2}4s ^{2}S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of ^{26m}Al, resulting in R_{c}=3.130(15) fm. This differs by 4.5 standard deviations from the extrapolated value used to calculate the isospin-symmetry breaking corrections in the superallowed ß decay of ^{26m}Al. Its corrected Ft value, important for the estimation of V_{ud} in the Cabibbo-Kobayashi-Maskawa matrix, is thus shifted by 1 standard deviation to 3071.4(1.0) s.

2.
Phys Rev Lett ; 127(27): 272301, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35061421

RESUMEN

The ground state to ground state electron-capture Q value of ^{159}Dy (3/2^{-}) has been measured directly using the double Penning trap mass spectrometer JYFLTRAP. A value of 364.73(19) keV was obtained from a measurement of the cyclotron frequency ratio of the decay parent ^{159}Dy and the decay daughter ^{159}Tb ions using the novel phase-imaging ion-cyclotron resonance technique. The Q values for allowed Gamow-Teller transition to 5/2^{-} and the third-forbidden unique transition to 11/2^{+} state with excitation energies of 363.5449(14) keV and 362.050(40) keV in ^{159}Tb were determined to be 1.18(19) keV and 2.68(19) keV, respectively. The high-precision Q value of transition 3/2^{-}→5/2^{-} from this work, revealing itself as the lowest electron-capture Q value, is used to unambiguously characterize all the possible lines that are present in its electron-capture spectrum. We performed atomic many-body calculations for both transitions to determine electron-capture probabilities from various atomic orbitals and found an order of magnitude enhancement in the event rates near the end point of energy spectrum in the transition to the 5/2^{-} nuclear excited state, which can become very interesting once the experimental challenges of identifying decays into excited states are overcome. The transition to the 11/2^{+} state is strongly suppressed and found unsuitable for measuring the neutrino mass. These results show that the electron-capture in the ^{159}Dy atom, going to the 5/2^{-} state of the ^{159}Tb nucleus, is a new candidate that may open the way to determine the electron-neutrino mass in the sub-eV region by studying electron-capture. Further experimental feasibility studies, including coincidence measurements with realistic detectors, will be of great interest.

3.
Phys Rev Lett ; 124(22): 222503, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32567932

RESUMEN

The ground-state-to-ground-state ß-decay Q value of ^{135}Cs(7/2^{+})→^{135}Ba(3/2^{+}) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between ^{135}Cs(7/2^{+}) and ^{135}Ba(3/2^{+}). With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted Q value in the Atomic Mass Evaluation 2016. The measurement confirms that the first-forbidden unique ß^{-}-decay transition ^{135}Cs(7/2^{+})→^{135}Ba(11/2^{-}) is a candidate for antineutrino mass measurements with an ultralow Q value of 0.44(31) keV. This Q value is almost an order of magnitude smaller than those of nuclides presently used in running or planned direct (anti)neutrino mass experiment.

5.
Phys Rev Lett ; 122(4): 042502, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30768318

RESUMEN

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The ß-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb ß decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the ß decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.

6.
Phys Rev Lett ; 123(26): 262701, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31951442

RESUMEN

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupted by a thermonuclear explosion rather than collapsing to form a neutron star. Importantly, our measurement resolves the last remaining nuclear physics uncertainty in the final evolution of degenerate oxygen-neon stellar cores, allowing future studies to address the critical role of convection, which at present is poorly understood.

7.
Phys Rev Lett ; 120(26): 262701, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004755

RESUMEN

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. ^{158}Nd, ^{160}Pm, ^{162}Sm, and ^{164-166}Gd have been measured for the first time, and the precisions for ^{156}Nd, ^{158}Pm, ^{162,163}Eu, ^{163}Gd, and ^{164}Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S_{2n} and neutron pairing energy metrics D_{n}. The data do not support the existence of a subshell closure at N=100. Neutron pairing has been found to be weaker than predicted by theoretical mass models. The impact on the calculated r-process abundances has been studied. Substantial changes resulting in a smoother abundance distribution and a better agreement with the solar r-process abundances are observed.

8.
Phys Rev Lett ; 116(7): 072501, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943530

RESUMEN

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the ^{96}Zr single and double ß decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single ß decay to ^{96}Mo, which are Q_{ß}(^{96}Zr)=163.96(13), Q_{ßß}(^{96}Zr)=3356.097(86), and Q_{ß}(^{96}Nb)=3192.05(16) keV. Of special importance is the ^{96}Zr single ß-decay Q value, which has never been determined directly. The single ß decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the ^{96}Zr ßß decay, and its observation can provide one of the most direct tests of the neutrinoless ßß-decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single ß-decay rate has been re-evaluated using a shell-model approach, which indicates a ^{96}Zr single ß-decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant g_{A}.

9.
Phys Rev Lett ; 113(9): 092501, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25215980

RESUMEN

Search for a new kind of superfluidity built on collective proton-neutron pairs with aligned spin is performed studying the Gamow-Teller decay of the T=1, J(π)=0+ ground state of (62)Ge into excited states of the odd-odd N=Z nucleus (62)Ga. The experiment is performed at GSI Helmholtzzentrum für Shwerionenforshung with the (62)Ge ions selected by the fragment separator and implanted in a stack of Si-strip detectors, surrounded by the RISING Ge array. A half-life of T1/2=82.9(14) ms is measured for the (62)Ge ground state. Six excited states of (62)Ga, populated below 2.5 MeV through Gamow-Teller transitions, are identified. Individual Gamow-Teller transition strengths agree well with theoretical predictions of the interacting shell model and the quasiparticle random phase approximation. The absence of any sizable low-lying Gamow-Teller strength in the reported beta-decay experiment supports the hypothesis of a negligible role of coherent T=0 proton-neutron correlations in (62)Ga.

10.
Phys Rev Lett ; 109(1): 012501, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-23031099

RESUMEN

The rotational band structure of the Z=104 nucleus (256)Rf has been observed up to a tentative spin of 20ℏ using state-of-the-art γ-ray spectroscopic techniques. This represents the first such measurement in a superheavy nucleus whose stability is entirely derived from the shell-correction energy. The observed rotational properties are compared to those of neighboring nuclei and it is shown that the kinematic and dynamic moments of inertia are sensitive to the underlying single-particle shell structure and the specific location of high-j orbitals. The moments of inertia therefore provide a sensitive test of shell structure and pairing in superheavy nuclei which is essential to ensure the validity of contemporary nuclear models in this mass region. The data obtained show that there is no deformed shell gap at Z=104, which is predicted in a number of current self-consistent mean-field models.

11.
Phys Rev Lett ; 109(3): 032501, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861839

RESUMEN

Atomic masses of the neutron-rich isotopes (121-128)Cd, (129,131)In, (130-135)Sn, (131-136)Sb, and (132-140)Te have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei (135)Sn, (136)Sb, and (139,140)Te were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across N = 82 for Sn, with a Z dependence that is unexplainable by the current theoretical models.

12.
Phys Rev Lett ; 107(17): 172502, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22107511

RESUMEN

A ß-decaying high-spin isomer in (96)Cd, with a half-life T(1/2)=0.29(-0.10)(+0.11) s, has been established in a stopped beam rare isotope spectroscopic investigations at GSI (RISING) experiment. The nuclei were produced using the fragmentation of a primary beam of (124)Xe on a (9)Be target. From the half-life and the observed γ decays in the daughter nucleus, (96)Ag, we conclude that the ß-decaying state is the long predicted 16(+) "spin-gap" isomer. Shell-model calculations, using the Gross-Frenkel interaction and the πν(p(1/2),g(9/2)) model space, show that the isoscalar component of the neutron-proton interaction is essential to explain the origin of the isomer. Core excitations across the N=Z=50 gaps and the Gamow-Teller strength, B(GT) distributions have been studied via large-scale shell-model calculations using the πν(g,d,s) model space to compare with the experimental B(GT) value obtained from the half-life of the isomer.

13.
Phys Rev Lett ; 105(20): 202501, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21231223

RESUMEN

The ß feeding probability of (102,104,105,106,107)Tc, 105Mo, and 101Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the γ component of the decay heat for 239Pu in the 4-3000 s range.

14.
Phys Rev Lett ; 101(14): 142503, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18851523

RESUMEN

Nuclides in the vicinity of 94Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter 92Rh and the beta-decay daughter 94Pd of the high-spin isomer in 94Ag have been measured, and the masses of 93Pd and 94Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in 94Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

15.
Phys Rev Lett ; 101(5): 052502, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18764386

RESUMEN

Atomic masses of the neutron-rich isotopes (76-80)Zn, (78-83)Ga, (80-85)Ge, (81-87)As, and (84-89)Se have been measured with high precision using the Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The masses of (82,83)Ga, (83-85)Ge, (84-87)As, and 89Se were measured for the first time. These new data represent a major improvement in the knowledge of the masses in this neutron-rich region. Two-neutron separation energies provide evidence for the reduction of the N=50 shell gap energy towards germanium (Z=32) and a subsequent increase at gallium (Z=31). The data are compared with a number of theoretical models. An indication of the persistent rigidity of the shell gap towards nickel (Z=28) is obtained.

16.
Phys Rev Lett ; 100(13): 132502, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18517940

RESUMEN

Using a new fast cleaning procedure to prepare isomerically pure ion samples, we have measured the beta-decay Q(EC) values of the superallowed beta emitters 5(0)Mn and (54)Co to be 7634.48(7) and 8244.54(10) keV, respectively, results which differ significantly from the previously accepted values. The corrected Ft values derived from our results strongly support new isospin-symmetry-breaking corrections that lead to a higher value of the up-down quark mixing element V(ud) and improved confirmation of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix.

17.
Phys Rev Lett ; 96(4): 042504, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16486814

RESUMEN

Atomic masses of 95-100Sr, 98-105Zr, and [corrected] 102-110Mo and have been measured with a precision of 10 keV employing a Penning trap setup at the IGISOL facility. Masses of 104,105Zr and 109,110Mo are measured for the first time. Our improved results indicate significant deviations from the previously published values deduced from beta end point measurements. The most neutron-rich studied isotopes are found to be significantly less bound (1 MeV) compared to the 2003 atomic mass evaluation. A strong correlation between nuclear deformation and the binding energy is observed in the two-neutron separation energy in all studied isotope chains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...