Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 49(11): 922-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23022488

RESUMEN

The hemibiotrophic basidiomycete fungus Moniliophthora perniciosa, the causal agent of Witches' broom disease (WBD) in cacao, is able to grow on methanol as the sole carbon source. In plants, one of the main sources of methanol is the pectin present in the structure of cell walls. Pectin is composed of highly methylesterified chains of galacturonic acid. The hydrolysis between the methyl radicals and galacturonic acid in esterified pectin, mediated by a pectin methylesterase (PME), releases methanol, which may be decomposed by a methanol oxidase (MOX). The analysis of the M. pernciosa genome revealed putative mox and pme genes. Real-time quantitative RT-PCR performed with RNA from mycelia grown in the presence of methanol or pectin as the sole carbon source and with RNA from infected cacao seedlings in different stages of the progression of WBD indicate that the two genes are coregulated, suggesting that the fungus may be metabolizing the methanol released from pectin. Moreover, immunolocalization of homogalacturonan, the main pectic domain that constitutes the primary cell wall matrix, shows a reduction in the level of pectin methyl esterification in infected cacao seedlings. Although MOX has been classically classified as a peroxisomal enzyme, M. perniciosa presents an extracellular methanol oxidase. Its activity was detected in the fungus culture supernatants, and mass spectrometry analysis indicated the presence of this enzyme in the fungus secretome. Because M. pernciosa possesses all genes classically related to methanol metabolism, we propose a peroxisome-independent model for the utilization of methanol by this fungus, which begins with the extracellular oxidation of methanol derived from the demethylation of pectin and finishes in the cytosol.


Asunto(s)
Agaricales/enzimología , Oxidorreductasas de Alcohol/metabolismo , Cacao/microbiología , Espacio Extracelular/enzimología , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Agaricales/genética , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Espacio Extracelular/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Metanol/metabolismo , Datos de Secuencia Molecular , Pectinas/metabolismo , Transporte de Proteínas , Alineación de Secuencia
2.
BMC Genomics ; 9: 548, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19019209

RESUMEN

BACKGROUND: The basidiomycete fungus Moniliophthora perniciosa is the causal agent of Witches' Broom Disease (WBD) in cacao (Theobroma cacao). It is a hemibiotrophic pathogen that colonizes the apoplast of cacao's meristematic tissues as a biotrophic pathogen, switching to a saprotrophic lifestyle during later stages of infection. M. perniciosa, together with the related species M. roreri, are pathogens of aerial parts of the plant, an uncommon characteristic in the order Agaricales. A genome survey (1.9x coverage) of M. perniciosa was analyzed to evaluate the overall gene content of this phytopathogen. RESULTS: Genes encoding proteins involved in retrotransposition, reactive oxygen species (ROS) resistance, drug efflux transport and cell wall degradation were identified. The great number of genes encoding cytochrome P450 monooxygenases (1.15% of gene models) indicates that M. perniciosa has a great potential for detoxification, production of toxins and hormones; which may confer a high adaptive ability to the fungus. We have also discovered new genes encoding putative secreted polypeptides rich in cysteine, as well as genes related to methylotrophy and plant hormone biosynthesis (gibberellin and auxin). Analysis of gene families indicated that M. perniciosa have similar amounts of carboxylesterases and repertoires of plant cell wall degrading enzymes as other hemibiotrophic fungi. In addition, an approach for normalization of gene family data using incomplete genome data was developed and applied in M. perniciosa genome survey. CONCLUSION: This genome survey gives an overview of the M. perniciosa genome, and reveals that a significant portion is involved in stress adaptation and plant necrosis, two necessary characteristics for a hemibiotrophic fungus to fulfill its infection cycle. Our analysis provides new evidence revealing potential adaptive traits that may play major roles in the mechanisms of pathogenicity in the M. perniciosa/cacao pathosystem.


Asunto(s)
Agaricales/genética , Cacao/microbiología , Genoma Fúngico , Enfermedades de las Plantas/microbiología , Agaricales/patogenicidad , Análisis por Conglomerados , ADN de Hongos/genética , Etiquetas de Secuencia Expresada , Genes Fúngicos , Genómica , Modelos Genéticos , Familia de Multigenes , Alineación de Secuencia , Análisis de Secuencia de ADN
3.
Curr Microbiol ; 56(4): 363-70, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18172716

RESUMEN

Oxalic acid has been shown as a virulence factor for some phytopathogenic fungi, removing calcium from pectin and favoring plant cell wall degradation. Recently, it was published that calcium oxalate accumulates in infected cacao tissues during the progression of Witches' Broom disease (WBD). In the present work we report that the hemibiotrophic basidiomycete Moniliophthora perniciosa, the causal agent of WBD, produces calcium oxalate crystals. These crystals were initially observed by polarized light microscopy of hyphae growing on a glass slide, apparently being secreted from the cells. The analysis was refined by Scanning electron microscopy and the compositon of the crystals was confirmed by energy-dispersive x-ray spectrometry. The production of oxalate by M. perniciosa was reinforced by the identification of a putative gene coding for oxaloacetate acetylhydrolase, which catalyzes the hydrolysis of oxaloacetate to oxalate and acetate. This gene was shown to be expressed in the biotrophic-like mycelia, which in planta occupy the intercellular middle-lamella space, a region filled with pectin. Taken together, our results suggest that oxalate production by M. perniciosa may play a role in the WBD pathogenesis mechanism.


Asunto(s)
Agaricales/metabolismo , Cacao/microbiología , Oxalato de Calcio/metabolismo , Enfermedades de las Plantas/microbiología , Agaricales/química , Agaricales/enzimología , Agaricales/genética , Secuencia de Aminoácidos , Animales , Proteínas Fúngicas/genética , Hidrolasas/genética , Hifa/química , Microscopía Electrónica de Rastreo , Microscopía de Polarización , Datos de Secuencia Molecular , Alineación de Secuencia , Espectrometría por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA