Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale Res Lett ; 14(1): 285, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31428955

RESUMEN

Wet etching offers an advantage as a soft, damage-less method to remove sacrificial material with close to nanometer precision which has become critical for the fabrication of nanoscale structures. In order to develop such wet etching solutions, screening of etchant properties like selectivity and (an)isotropy has become vital. Since these etchants typically have low etch rates, sensitive test structures are required to evaluate their etching behavior. Therefore, scaled-down single-crystalline Si (c-Si) and SiGe (c-SiGe) wagon-wheels were fabricated. First, the sensitivity of the c-Si wagon-wheels to detect anisotropic behavior of crystalline silicon in the alkaline etchants TMAH and NH4OH was demonstrated. Distinctive wagon-wheel patterns, characteristic for each material/etchant pair, were observed by top-down scanning electron microscopy (SEM) after anisotropic wet etching. Similar trends in crystallographic plane-dependent etch rates were obtained for both Si(100) and Si(110) substrates. Secondly, the etching of both c-Si and c-Si75Ge25 wagon-wheels in a typical selective etchant, peracetic acid (PAA), was evaluated. c-Si75Ge25 etching in PAA resulted in isotropic etching. Selectivity values were calculated based on two methods: the first by measurement of the sidewall loss of the spokes of the wagon-wheel, the second, indirect method, through measurement of the spoke retraction lengths. Both methods give comparable values, but the latter method can only be used after a certain critical etching time, after which the spoke tips have evolved toward a sharp tip.

2.
Langmuir ; 34(4): 1400-1409, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29290116

RESUMEN

N3-functionalized monolayers on silicon wafer substrates are prepared via the controlled vapor-phase deposition of 11-azidoundecyltrimethoxysilanes at reduced pressure and elevated temperature. The quality of the layer is assessed using contact angle, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and ellipsometry measurements. At 60 °C, longer deposition times are needed to achieve monolayers with similar N3 density compared to depositions at 145 °C. The monolayers formed via the vapor phase are denser compared to those formed via a solvent-based deposition process. ATR-FTIR measurements confirm the incorporation of azido-alkyl chains in the monolayer and the formation of siloxane bridges with the underlying oxide at both deposition temperatures. X-ray photon spectroscopy shows that the N3 group is oriented upward in the grafted layer. Finally, the density was determined using total reflection X-ray fluorescence after a click reaction with chlorohexyne and amounts to 2.5 × 1014 N3 groups/cm2. In summary, our results demonstrate the formation of a uniform and reproducible N3-containing monolayer on silicon wafers, hereby providing a functional coating that enables click reactions at the substrate.

3.
J Inorg Biochem ; 149: 1-5, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25890482

RESUMEN

Protein phosphatase-1 (PP1) is a major protein Ser/Thr phosphatase in eukaryotic cells. Its activity depends on two metal ions in the catalytic site, which were identified as manganese in the bacterially expressed phosphatase. However, the identity of the metal ions in native PP1 is unknown. In this study, total reflection X-ray fluorescence (TXRF) was used to detect iron and zinc in PP1 that was purified from rabbit skeletal muscle. Metal exchange experiments confirmed that the distinct substrate specificity of recombinant and native PP1 is determined by the nature of their associated metals. We also found that the iron level associated with native PP1 is decreased by incubation with inhibitor-2, consistent with a function of inhibitor-2 as a PP1 chaperone.


Asunto(s)
Dominio Catalítico , Hierro/química , Proteína Fosfatasa 1/química , Zinc/química , Animales , Músculo Esquelético/enzimología , Proteína Fosfatasa 1/antagonistas & inhibidores , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...