Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 30(29): e202400431, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38483818

RESUMEN

The structure of the spirocyclic product obtained by reacting catechol with 1,1-dichloro-2-(chloromethyl)cyclopropane is shown by NMR and X-ray analysis to be that of a 2-methylcyclopropene (MeCP), instead of the previously reported 2-methylenecyclopropane (MCP) one. The study of the equilibration between the two isomeric forms by experimental and computational means (including both Density Functional Theory - DFT - and Coupled Cluster with single, double, and perturbative triple excitations - CCSD(T) - calculations) revealed that, at variance with most of the alkylidenecyclopropane/alkylcyclopropene systems described to date, for the compounds of the present study the MeCP derivative is more stable by≈ 2.5-3.0 Kcal mol-1 than the MCP one. The extension of the DFT and CCSD(T) study to other spiro-MCP/MeCP pairs suggests that the origin of the unexpected shift of the equilibrium position can be tracked back to a combination of electronic and ring-strain effects. These findings lead to re-think a long-standing, and substantially undisputed belief in the area of unsaturated cyclopropane derivatives.

2.
J Breath Res ; 17(4)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37524075

RESUMEN

This paper describes the AEOLUS pilot study which combines breath analysis with cardiopulmonary exercise testing (CPET) and an echocardiographic examination for monitoring heart failure (HF) patients. Ten consecutive patients with a prior clinical diagnosis of HF with reduced left ventricular ejection fraction were prospectively enrolled together with 15 control patients with cardiovascular risk factors, including hypertension, type II diabetes or chronic ischemic heart disease. Breath samples were collected at rest and during CPET coupled with exercise stress echocardiography (CPET-ESE) protocol by means of needle trap micro-extraction and were analyzed through gas-chromatography coupled with mass spectrometry. The protocol also involved using of a selected ion flow tube mass spectrometer for a breath-by-breath isoprene and acetone analysis during exercise. At rest, HF patients showed increased breath levels of acetone and pentane, which are related to altered oxidation of fatty acids and oxidative stress, respectively. A significant positive correlation was observed between acetone and the gold standard biomarker NT-proBNP in plasma (r= 0.646,p< 0.001), both measured at rest. During exercise, some exhaled volatiles (e.g., isoprene) mirrored ventilatory and/or hemodynamic adaptation, whereas others (e.g., sulfide compounds and 3-hydroxy-2-butanone) depended on their origin. At peak effort, acetone levels in HF patients differed significantly from those of the control group, suggesting an altered myocardial and systemic metabolic adaptation to exercise for HF patients. These preliminary data suggest that concomitant acquisition of CPET-ESE and breath analysis is feasible and might provide additional clinical information on the metabolic maladaptation of HF patients to exercise. Such information may refine the identification of patients at higher risk of disease worsening.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Humanos , Prueba de Esfuerzo/métodos , Volumen Sistólico , Acetona , Proyectos Piloto , Función Ventricular Izquierda , Pruebas Respiratorias/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Ecocardiografía/métodos
3.
Talanta ; 257: 124333, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801554

RESUMEN

A key issue in GCxGC-HRMS data analysis is how to approach large-sample studies in an efficient and comprehensive way. We have developed a semi-automated data-driven workflow from identification to suspect screening, which allows highly selective monitoring of each identified chemical in a large-sample dataset. The example dataset used to illustrate the potential of the approach consisted of human sweat samples from 40 participants, including field blanks (80 samples). These samples have been collected in a Horizon 2020 project to investigate the capacity of body odour to communicate emotion and influence social behaviour. We used dynamic headspace extraction, which allows comprehensive extraction with high preconcentration capability, and has to date only been used for a few biological applications. We were able to detect a set of 326 compounds from a diverse range of chemical classes (278 identified compounds, 39 class unknowns, and 9 true unknowns). Unlike partitioning-based extraction methods, the developed method detects semi-polar (log P < 2) nitrogen and oxygen-containing compounds. However, it is unable to detect certain acids due to the pH conditions of unmodified sweat samples. We believe that our framework will open up the possibility of efficiently using GCxGC-HRMS for large-sample studies in a wide range of applications such as biological and environmental studies.


Asunto(s)
Sudor , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos
4.
Sci Total Environ ; 720: 137444, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32325564

RESUMEN

Building related health effects or symptoms (BRS), known also as sick-building syndrome (SBS), are a phenomenon that is not well understood. In this study, air samples from 51 rooms associated with BRS and 34 control rooms were collected on multi-sorbent tubes and analyzed by a non-target approach using comprehensive two-dimensional gas chromatography and high-resolution mass spectrometry techniques. The large amount of data gathered was analyzed using multivariate statistics (principle component analysis (PCA) and partial least squares (PLS)). This new analysis approach revealed that in rooms where people experienced BRS, petrochemicals and chemicals emitted from plastics were abundant, whereas in rooms where people did not experience BRS, flavor and fragrance compounds were abundant. Among the petrochemicals benzene and 2-butoxyethanol were found in higher levels in rooms where people experienced BRS. The levels of limonene were sometimes in the range of reported odor thresholds, and similarly 3-carene and beta-myrcene were found in higher concentrations in indoor air of rooms where people did not experience BRS. It cannot be ruled out that these compounds may have influenced the perceived air quality. However, the overall variability in air concentrations was large and it was not possible to accurately predict if the air in a particular room could cause BRS or not.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Humanos , Odorantes , Síndrome del Edificio Enfermo
5.
J Sep Sci ; 43(8): 1489-1498, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32052921

RESUMEN

Building-related health effects are frequently observed. Several factors have been listed as possible causes including temperature, humidity, light conditions, presence of particulate matter, and microorganisms or volatile organic compounds. To be able to link exposure to specific volatile organic compounds to building-related health effects, powerful and comprehensive analytical methods are required. For this purpose, we developed an active air sampling method that utilizes dual-bed tubes loaded with TENAX-TA and Carboxen-1000 adsorbents to sample two parallel air samples of 4 L each. For the comprehensive volatile organic compounds analysis, an automated thermal desorption comprehensive two-dimensional gas chromatography high-resolution time-of-flight mass spectrometry method was developed and used. It allowed targeted analysis of approximately 90 known volatile organic compounds with relative standard deviations below 25% for the vast majority of target volatile organic compounds. It also allowed semiquantification (no matching standards) of numerous nontarget air contaminants using the same data set. The nontarget analysis workflow included peak finding, background elimination, feature alignment, detection frequency filtering, and tentative identification. Application of the workflow to air samples from 68 indoor environments at a large hospital complex resulted in a comprehensive volatile organic compound characterization, including 178 single compounds and 13 hydrocarbon groups.

7.
Front Microbiol ; 9: 2926, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555447

RESUMEN

Coastal ecosystems are highly dynamic and can be strongly influenced by climate change, anthropogenic activities (e.g., pollution), and a combination of the two pressures. As a result of climate change, the northern hemisphere is predicted to undergo an increased precipitation regime, leading in turn to higher terrestrial runoff and increased river inflow. This increased runoff will transfer terrestrial dissolved organic matter (tDOM) and anthropogenic contaminants to coastal waters. Such changes can directly influence the resident biology, particularly at the base of the food web, and can influence the partitioning of contaminants and thus their potential impact on the food web. Bacteria have been shown to respond to high tDOM concentration and organic pollutants loads, and could represent the entry of some pollutants into coastal food webs. We carried out a mesocosm experiment to determine the effects of: (1) increased tDOM concentration, (2) organic pollutant exposure, and (3) the combined effect of these two factors, on pelagic bacterial communities. This study showed significant responses in bacterial community composition under the three environmental perturbations tested. The addition of tDOM increased bacterial activity and diversity, while the addition of organic pollutants led to an overall reduction of these parameters, particularly under concurrent elevated tDOM concentration. Furthermore, we identified 33 bacterial taxa contributing to the significant differences observed in community composition, as well as 35 bacterial taxa which responded differently to extended exposure to organic pollutants. These findings point to the potential impact of organic pollutants under future climate change conditions on the basal coastal ecosystem, as well as to the potential utility of natural bacterial communities as efficient indicators of environmental disturbance.

8.
Sci Total Environ ; 633: 1496-1509, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29758901

RESUMEN

The consumption of pharmaceuticals worldwide coupled with modest removal efficiencies of sewage treatment plants have resulted in the presence of pharmaceuticals in aquatic systems globally. In this study, we investigated the environmental concentrations of a selection of 93 pharmaceuticals in 43 locations in the Baltic Sea and Skagerrak. The Baltic Sea is vulnerable to anthropogenic activities due to a long turnover time and a sensitive ecosystem in the brackish water. Thirty-nine of 93 pharmaceuticals were detected in at least one sample, with concentrations ranging between 0.01 and 80 ng/L. One of the pharmaceuticals investigated, the anti-epileptic drug carbamazepine, was widespread in coastal and offshore seawaters (present in 37 of 43 samples). In order to predict concentrations of pharmaceuticals in the sub-basins of the Baltic Sea, a mass balance-based grey box model was set up and the persistent, widely used carbamazepine was selected as the model substance. The model was based on hydrological and meteorological sub-basin characteristics, removal data from smaller watersheds and wastewater treatment plants, and statistics relating to population, consumption and excretion rate of carbamazepine in humans. The grey box model predicted average environmental concentrations of carbamazepine in sub-basins with no significant difference from the measured concentrations, amounting to 0.57-3.2 ng/L depending on sub-basin location. In the Baltic Sea, the removal rate of carbamazepine in seawater was estimated to be 6.2 10-9 s-1 based on a calculated half-life time of 3.5 years at 10 °C, which demonstrates the long response time of the environment to measures phasing out persistent or slowly degradable substances such as carbamazepine. Sampling, analysis and grey box modelling were all valuable in describing the presence and removal of carbamazepine in the Baltic Sea.


Asunto(s)
Carbamazepina/análisis , Modelos Químicos , Contaminantes Químicos del Agua/análisis , Contaminación Química del Agua/estadística & datos numéricos , Preparaciones Farmacéuticas , Agua de Mar/química
9.
Mar Pollut Bull ; 112(1-2): 58-64, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27575397

RESUMEN

Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.


Asunto(s)
Contaminantes Atmosféricos/análisis , Anisoles/análisis , Monitoreo del Ambiente/métodos , Éteres Difenilos Halogenados/análisis , Agua de Mar/química , Contaminantes Químicos del Agua/análisis , Países Bálticos , Monitoreo del Ambiente/instrumentación , Cromatografía de Gases y Espectrometría de Masas , Océanos y Mares , Estaciones del Año
10.
Ambio ; 44 Suppl 3: 345-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26022318

RESUMEN

Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.


Asunto(s)
Cambio Climático , Ecosistema , Fitoplancton
11.
Ambio ; 44 Suppl 3: 472-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26022329

RESUMEN

Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011-2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069-2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air-sea gas exchange and "bulk" (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year(-1) for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year(-1) for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.


Asunto(s)
Plaguicidas/análisis , Cambio Climático , Monitoreo del Ambiente
12.
Environ Sci Technol ; 49(3): 1445-52, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25581499

RESUMEN

Regional climate change scenarios predict increased temperature and precipitation in the northern Baltic Sea, leading to a greater runoff of fresh water and terrestrial dissolved organic carbon (DOC) within the second part of the 21st century. As a result, the current north to south gradient in temperature and salinity is likely to be shifted further toward the south. To examine if such climate change effects would cause alterations in the environmental fate of organic pollutants, spatial variations of DOC quality and sorption behavior toward organic contaminants were examined using multiple analytical methods. The results showed declining contents of aromatic functional groups in DOC along a north to south gradient. Similarly, the sorption of a diverse set of organic contaminants to DOC also showed spatial differences. The sorption behavior of these contaminants was modeled using poly parameter linear energy relationships. The resulting molecular descriptors indicated clear differences in the sorption properties of DOC sampled in northern and southern parts of the Baltic Sea, which imply that more organic contaminants are sorbed to DOC in the northern part. The extent of this sorption process determines whether individual contaminants will partition to biota via direct uptake or through sorption to DOC, which serves as food source for bacteria-based food-webs.


Asunto(s)
Carbono/química , Cambio Climático , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/química , Adsorción , Océanos y Mares , Salinidad , Temperatura
13.
Environ Toxicol Chem ; 34(2): 266-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25393710

RESUMEN

Dissolved organic carbon (DOC) plays a key role in determining the environmental fate of semivolatile organic environmental contaminants. The goal of the present study was to develop a method using commercially available hardware to rapidly characterize the sorption properties of DOC in water samples. The resulting method uses negligible-depletion direct immersion solid-phase microextraction (SPME) and gas chromatography-mass spectrometry. Its performance was evaluated using Nordic reference fulvic acid and 40 priority environmental contaminants that cover a wide range of physicochemical properties. Two SPME fibers had to be used to cope with the span of properties, 1 coated with polydimethylsiloxane and 1 coated with polystyrene divinylbenzene polydimethylsiloxane, for nonpolar and semipolar contaminants, respectively. The measured DOC-water distribution constants showed reasonably good reproducibility (standard deviation ≤ 0.32) and good correlation (R(2) = 0.80) with log octanol-water partition coefficients for nonpolar persistent organic pollutants. The sample pretreatment is limited to filtration, and the method is easy to adjust to different DOC concentrations. These experiments also utilized the latest SPME automation that largely decreases total cycle time (to 20 min or shorter) and increases sample throughput, which is advantageous in cases when many samples of DOC must be characterized or when the determinations must be performed quickly, for example, to avoid precipitation, aggregation, and other changes of DOC structure and properties. The data generated by this method are valuable as a basis for transport and fate modeling studies.


Asunto(s)
Carbono/análisis , Compuestos Orgánicos/análisis , Microextracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Agua/química , Adsorción , Automatización , Carbono/química , Dimetilpolisiloxanos/química , Cromatografía de Gases y Espectrometría de Masas , Poliestirenos/química , Polivinilos , Reproducibilidad de los Resultados , Agua de Mar/química
14.
Environ Sci Technol ; 48(11): 6124-32, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24811233

RESUMEN

Bromophenols produced by marine algae undergo O-methylation to form bromoanisoles (BAs), which are exchanged between water and air. BAs were determined in surface water of the northern Baltic Sea (Gulf of Bothnia, consisting of Bothnian Bay and Bothnian Sea) during 2011-2013 and on a transect of the entire Baltic in September 2013. The abundance decreased in the following order: 2,4,6-tribromoanisole (2,4,6-TBA)>2,4-dibromoanisole (2,4-DBA)≫2,6-dibromoanisole (2,6-DBA). Concentrations of 2,4-DBA and 2,4,6-TBA in September were higher in the southern than in the northern Baltic and correlated well with the higher salinity in the south. This suggests south-to-north advection and dilution with fresh riverine water enroute, and/or lower production in the north. The abundance in air over the northern Baltic also decreased in the following order: 2,4,6-TBA>2,4-DBA. However, 2,6-DBA was estimated as a lower limit due to breakthrough from polyurethane foam traps used for sampling. Water/air fugacity ratios ranged from 3.4 to 7.6 for 2,4-DBA and from 18 to 94 for 2,4,6-TBA, indicating net volatilization. Flux estimates using the two-film model suggested that volatilization removes 980-1360 kg of total BAs from Bothnian Bay (38000 km2) between May and September. The release of bromine from outgassing of BAs could be up to 4-6% of bromine fluxes from previously reported volatilization of bromomethanes and bromochloromethanes.


Asunto(s)
Contaminantes Atmosféricos/química , Anisoles/química , Bromo/química , Agua de Mar/química , Contaminantes Químicos del Agua/química , Movimientos del Aire , Contaminantes Atmosféricos/análisis , Anisoles/análisis , Bromo/análisis , Monitoreo del Ambiente , Océanos y Mares , Salinidad , Agua de Mar/análisis , Suecia , Volatilización , Movimientos del Agua , Contaminantes Químicos del Agua/análisis
15.
Langmuir ; 23(3): 961-4, 2007 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-17240995

RESUMEN

Various types of pattern formation and self-organization phenomena can be observed in biological, chemical, and geochemical systems due to the interaction of reaction with diffusion. The appearance of static precipitation patterns was reported first by Liesegang in 1896. Traveling waves and dynamically changing patterns can also exist in reaction-diffusion systems: the Belousov-Zhabotinsky reaction provides a classical example for these phenomena. Until now, no experimental evidence had been found for the presence of such dynamical patterns in precipitation systems. Pattern formation phenomena, as a result of precipitation front coupling with traveling waves, are investigated in a new simple reaction-diffusion system that is based on the precipitation and complex formation of aluminum hydroxide. A unique kind of self-organization, the spontaneous appearance of traveling waves, and spiral formation inside a precipitation front is reported. The newly designed system is a simple one (we need just two inorganic reactants, and the experimental setup is simple), in which dynamically changing pattern formation can be observed. This work could show a new perspective in precipitation pattern formation and geochemical self-organization.


Asunto(s)
Precipitación Química , Hidróxido de Aluminio/síntesis química , Hidróxido de Aluminio/química , Difusión , Métodos
16.
J Phys Chem B ; 110(10): 4535-7, 2006 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-16526680

RESUMEN

A new simple reaction-diffusion system is presented focusing on pattern formation phenomena as consecutive precipitation fronts and distortion of the precipitation front. The chemical system investigated here is based on the amphoteric property of aluminum hydroxide and exhibits two unique phenomena. Both the existence of consecutive precipitation fronts and distortion are reported for the first time. The precipitation patterns could be controlled by the pH field, and the distortion of the precipitation front can be practical for microtechnological applications of reaction-diffusion systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...