Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 45(3): 479-504, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35567709

RESUMEN

PURPOSE: Transcriptome analysis of pancreatic ductal adenocarcinoma (PDAC) has been useful to identify gene expression changes that sustain malignant phenotypes. Yet, most studies examined only tumor tissues and focused on protein-coding genes, leaving long non-coding RNAs (lncRNAs) largely underexplored. METHODS: We generated total RNA-Seq data from patient-matched tumor and nonmalignant pancreatic tissues and implemented a computational pipeline to survey known and novel lncRNAs. siRNA-mediated knockdown in tumor cell lines was performed to assess the contribution of PDAC-associated lncRNAs to malignant phenotypes. Gene co-expression network and functional enrichment analyses were used to assign deregulated lncRNAs to biological processes and molecular pathways. RESULTS: We detected 9,032 GENCODE lncRNAs as well as 523 unannotated lncRNAs, including transcripts significantly associated with patient outcome. Aberrant expression of a subset of novel and known lncRNAs was confirmed in patient samples and cell lines. siRNA-mediated knockdown of a subset of these lncRNAs (LINC01559, LINC01133, CCAT1, LINC00920 and UCA1) reduced cell proliferation, migration and invasion. Gene co-expression network analysis associated PDAC-deregulated lncRNAs with diverse biological processes, such as cell adhesion, protein glycosylation and DNA repair. Furthermore, UCA1 knockdown was shown to specifically deregulate co-expressed genes involved in DNA repair and to negatively impact DNA repair following damage induced by ionizing radiation. CONCLUSIONS: Our study expands the repertoire of lncRNAs deregulated in PDAC, thereby revealing novel candidate biomarkers for patient risk stratification. It also provides a roadmap for functional assays aimed to characterize novel mechanisms of action of lncRNAs in pancreatic cancer, which could be explored for therapeutic development.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ARN Largo no Codificante , Adenocarcinoma/genética , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...