Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biophys Rev (Melville) ; 5(3): 032101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38962393

RESUMEN

Polymeric fibrin provides the structural and mechanical stability of a blood clot. Fibrin fibers are rod-like and create a network mesh that holds blood cells. When a clot has performed its physiological function in wound healing and preventing excessive blood loss, it must be resolved by the enzymatic degradation of fibrin, otherwise known as fibrinolysis. If a blood clot forms when or where it is not needed, as occurs in ischemic strokes and myocardial infarctions, the blood clot (thrombus) can obstruct blood flow to downstream organs. Obstructive thrombi must be degraded or removed to prevent further complications. If a clot is not degraded on its own, lytic agents (i.e., tissue plasminogen activator, tPA) are given exogenously to induce fibrinolysis. Here, we fluorescently labeled both fibrin and tPA to visualize degradation at the edge of the clot. The fibers with bound tPA were looped or coiled while the fibers farther into the clot remain straight and stable displaying the diffusion of tPA and depth of lysis. This image provides (1) a new method to monitor fibrinolysis with a commercially available chamber with convenient inlets and (2) the visualization of tPA-bound fibrin and the behavior of fibers during degradation. Future work could utilize this technique to study tPA molecule and fibrin interactions, lysis front degradation, and fibrin fiber linearity to understand the mechanisms of intermolecular dynamics dependent on network structure. An enhanced insight into this process can aid in the development of optimized therapeutics to target stubborn clots.

2.
Biophys J ; 123(5): 610-621, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38356261

RESUMEN

We modify a three-dimensional multiscale model of fibrinolysis to study the effect of plasmin-mediated degradation of fibrin on tissue plasminogen activator (tPA) diffusion and fibrinolysis. We propose that tPA is released from a fibrin fiber by simple kinetic unbinding, as well as by "forced unbinding," which occurs when plasmin degrades fibrin to which tPA is bound. We show that, if tPA is bound to a small-enough piece of fibrin that it can diffuse into the clot, then plasmin can increase the effective diffusion of tPA. If tPA is bound to larger fibrin degradation products (FDPs) that can only diffuse along the clot, then plasmin can decrease the effective diffusion of tPA. We find that lysis rates are fastest when tPA is bound to fibrin that can diffuse into the clot, and slowest when tPA is bound to FDPs that can only diffuse along the clot. Laboratory experiments confirm that FDPs can diffuse into a clot, and they support the model hypothesis that forced unbinding of tPA results in a mix of FDPs, such that tPA bound to FDPs can diffuse both into and along the clot. Regardless of how tPA is released from a fiber, a tPA mutant with a smaller dissociation constant results in slower lysis (because tPA binds strongly to fibrin), and a tPA mutant with a larger dissociation constant results in faster lysis.


Asunto(s)
Fibrinolisina , Fibrinólisis , Fibrinolisina/metabolismo , Fibrinolisina/farmacología , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/farmacología , Fibrina/metabolismo , Cinética , Plasminógeno/metabolismo
3.
Biomolecules ; 14(2)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38397467

RESUMEN

Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.


Asunto(s)
Fibrinógeno , Trombosis , Humanos , Fibrinógeno/metabolismo , Trombina/metabolismo , Coagulación Sanguínea , Plasma/metabolismo , Fibrina/química
4.
Bioengineering (Basel) ; 11(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38247940

RESUMEN

Diabetic retinopathy affects more than 100 million people worldwide and is projected to increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems. These molecules initiate the slow breakdown of the retinal vasculature and the inner blood retinal barrier (iBRB), resulting in ischemia and abnormal angiogenesis. This project examined the impact of AGEs in altering the morphology of healthy cells that comprise the iBRB, as well as the effects of AGEs on thrombi formation, in vitro. Our results illustrate that AGEs significantly alter cellular areas and increase the formation of blood clots via elevated levels of tissue factor. Likewise, AGEs upregulate the expression of cell receptors (RAGE) on both endothelial and glial cells, a hallmark biomarker of inflammation in diabetic cells. Examining the effects of AGEs stimulation on cellular functions that work to diminish iBRB integrity will greatly help to advance therapies that target vision loss in adults.

5.
Sci Rep ; 14(1): 2623, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38297113

RESUMEN

Blood clots, which are composed of blood cells and a stabilizing mesh of fibrin fibers, are critical in cessation of bleeding following injury. However, their action is transient and after performing their physiological function they must be resolved through a process known as fibrinolysis. Internal fibrinolysis is the degradation of fibrin by the endogenous or innate presence of lytic enzymes in the bloodstream; under healthy conditions, this process regulates hemostasis and prevents bleeding or clotting. Fibrin-bound tissue plasminogen activator (tPA) converts nearby plasminogen into active plasmin, which is bound to the fibrin network, breaking it down into fibrin degradation products and releasing the entrapped blood cells. It is poorly understood how changes in the fibrin structure and lytic protein ratios influence the biochemical regulation and behavior of internal fibrinolysis. We used turbidity kinetic tracking and microscopy paired with mathematical modeling to study fibrin structure and lytic protein ratios that restrict internal fibrinolysis. Analysis of simulations and experiments indicate that fibrinolysis is driven by pore expansion of the fibrin network. We show that this effect is strongly influenced by the ratio of fibrin:tPAwhen compared to absolute tPA concentration. Thus, it is essential to consider relative protein concentrations when studying internal fibrinolysis both experimentally and in the clinic. An improved understanding of effective internal lysis can aid in development of better therapeutics for the treatment of bleeding and thrombosis.


Asunto(s)
Fibrinólisis , Trombosis , Humanos , Activador de Tejido Plasminógeno/metabolismo , Coagulación Sanguínea , Fibrina/metabolismo
6.
Res Pract Thromb Haemost ; 7(2): 100081, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36942151

RESUMEN

In response to vessel injury (or other pathological conditions), the hemostatic process is activated, resulting in a fibrous, cellular-rich structure commonly referred to as a blood clot. Succeeding the clot's function in wound healing, it must be resolved. This illustrated review focuses on fibrinolysis-the degradation of blood clots or thrombi. Fibrin is the main mechanical and structural component of a blood clot, which encases the cellular components of the clot, including platelets and red blood cells. Fibrinolysis is the proteolytic degradation of the fibrin network that results in the release of the cellular components into the bloodstream. In the case of thrombosis, fibrinolysis is required for restoration of blood flow, which is accomplished clinically through exogenously delivered lytic factors in a process called external lysis. Fibrinolysis is regulated by plasminogen activators (tissue-type and urokinase-type) that convert plasminogen into plasmin to initiate fiber lysis and lytic inhibitors that impede this lysis (plasminogen activator inhibitors, alpha 2-antiplasmin, and thrombin activatable fibrinolysis inhibitor). Furthermore, the network structure has been shown to regulate lysis: thinner fibers and coarser clots lyse faster than thicker fibers and finer clots. Clot contraction, a result of platelets pulling on fibers, results in densely packed red blood cells (polyhedrocytes), reduced permeability to fibrinolytic factors, and increased fiber tension. Extensive research in the field has allowed for critical advancements leading to improved thrombolytic agents. In this review, we summarize the state of the field, highlight gaps in knowledge, and propose future research questions.

7.
Biophys J ; 121(17): 3271-3285, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35927957

RESUMEN

Thrombosis, resulting in occlusive blood clots, blocks blood flow to downstream organs and causes life-threatening conditions such as heart attacks and strokes. The administration of tissue plasminogen activator (t-PA), which drives the enzymatic degradation (fibrinolysis) of these blood clots, is a treatment for thrombotic conditions, but the use of these therapeutics is often limited due to the time-dependent nature of treatment and their limited success. We have shown that clot contraction, which is altered in prothrombotic conditions, influences the efficacy of fibrinolysis. Clot contraction results in the volume shrinkage of blood clots, with the redistribution and densification of fibrin and platelets on the exterior of the clot and red blood cells in the interior. Understanding how these key structural changes influence fibrinolysis can lead to improved diagnostics and patient care. We used a combination of mathematical modeling and experimental methodologies to characterize the process of exogenous delivery of t-PA (external fibrinolysis). A three-dimensional (3D) stochastic, multiscale model of external fibrinolysis was used to determine how the structural changes that occur during the process of clot contraction influence the mechanism(s) of fibrinolysis. Experiments were performed based on modeling predictions using pooled human plasma and the external delivery of t-PA to initiate lysis. Analysis of fibrinolysis simulations and experiments indicate that fibrin densification makes the most significant contribution to the rate of fibrinolysis compared with the distribution of components and degree of compaction (p < 0.0001). This result suggests the possibility of a certain fibrin density threshold above which t-PA effective diffusion is limited. From a clinical perspective, this information can be used to improve on current therapeutics by optimizing timing and delivery of lysis agents.


Asunto(s)
Trombosis , Activador de Tejido Plasminógeno , Plaquetas/fisiología , Fibrina/metabolismo , Fibrinólisis/fisiología , Humanos , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/farmacología
8.
Exp Neurol ; 345: 113826, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34343529

RESUMEN

Nkx6.1 plays an essential role during the embryonic development of the spinal cord. However, its role in the adult and injured spinal cord is not well understood. Here we show that lentivirus-mediated Nkx6.1 expression in the adult injured mouse spinal cord promotes cell proliferation and activation of endogenous neural stem/progenitor cells (NSPCs) at the acute phase of injury. In the chronic phase, Nkx6.1 increases the number of interneurons, reduces the number of reactive astrocytes, minimizes glial scar formation, and represses neuroinflammation. Transcriptomic analysis reveals that Nkx6.1 upregulates the sequential expression of genes involved in cell proliferation, neural differentiation, and Notch signaling pathway, downregulates genes and pathways involved in neuroinflammation, reactive astrocyte activation, and glial scar formation. Together, our findings support the potential role of Nkx6.1 in neural regeneration in the adult injured spinal cord.


Asunto(s)
Gliosis/metabolismo , Proteínas de Homeodominio/biosíntesis , Células-Madre Neurales/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Factores de Edad , Animales , Femenino , Gliosis/patología , Gliosis/prevención & control , Células HEK293 , Humanos , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/prevención & control , Traumatismos de la Médula Espinal/patología
9.
Exp Neurol ; 325: 113119, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31751572

RESUMEN

Traumatic brain injury (TBI) is a leading cause of death and disability in the US. Neural stem/progenitor cells (NSPCs) persist in the adult brain and represent a potential cell source for tissue regeneration and wound healing after injury. The Notch signaling pathway is critical for embryonic development and adult brain injury response. However, the specific role of Notch signaling in the injured brain is not well characterized. Our previous study has established a Notch1CR2-GFP reporter mouse line in which the Notch1CR2 enhancer directs GFP expression in NSPCs and their progeny. In this study, we performed closed head injury (CHI) in the Notch1CR2-GFP mice to study the response of injury-activated NSPCs. We show that CHI induces neuroinflammation, cell death, and the expression of typical TBI markers (e.g., ApoE, Il1b, and Tau), validating the animal model. In addition, CHI induces cell proliferation in GFP+ cells expressing NSPC markers, e.g., Notch1 and Nestin. A significant higher percentage of GFP+ astrocytes and GABAergic neurons was observed in the injured brain, with no significant change in oligodendrocyte lineage between the CHI and sham animal groups. Since injury is known to activate astrogliosis, our results suggest that injury-induced GFP+ NSPCs preferentially differentiate into GABAergic neurons. Our study establishes that Notch1CR2-GFP transgenic mouse is a useful tool for the study of NSPC behavior in vivo after TBI. Unveiling the potential of NSPCs response to TBI (e.g., proliferation and differentiation) will identify new therapeutic strategy for the treatment of brain trauma.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Diferenciación Celular , Modelos Animales de Enfermedad , Neuronas GABAérgicas , Células-Madre Neurales , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA