Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(5): 2443-2452, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37759352

RESUMEN

BACKGROUND: Phoma stem canker is an economically important disease of oilseed rape, caused by two co-existing fungal pathogen species, Leptosphaeria maculans (Plenodomus lingam) and Leptosphaeria biglobosa (Plenodomus biglobosus). Leptosphaeria maculans produces a phytotoxin called sirodesmin PL. Our previous work showed that L. biglobosa has an antagonistic effect on the production of sirodesmin PL if it is simultaneously co-inoculated with L. maculans. However, the effects of sequential co-inoculation on interspecific interactions between the two pathogens are not understood. RESULTS: The interactions between L. maculans and L. biglobosa were investigated in liquid culture by inoculation with L. maculans first, followed by L. biglobosa sequentially at 1, 3, 5 or 7 days later and vice versa; the controls were inoculated with L. maculans only, L. biglobosa only, or L. maculans and L. biglobosa simultaneously. The results showed that L. biglobosa inhibited the growth of L. maculans, the production of both sirodesmin PL and its precursors if L. biglobosa was inoculated before, or simultaneously with, L. maculans. However, the antagonistic effects of L. biglobosa were lost if it was co-inoculated 5 or 7 days after L. maculans. CONCLUSION: For the first time, the results of this study provided evidence that the timing when L. maculans and L. biglobosa meet significantly influences the outcome of the interspecific competition between them. Leptosphaeria biglobosa can inhibit the production of sirodesmin PL and the growth of L. maculans if it is inoculated before L. maculans or less than 3 days after L. maculans in liquid culture. There is a need to further investigate the timing of co-inoculation on interactions between L. maculans and L. biglobosa in their host plants for improving the control of phoma stem canker. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Ascomicetos , Brassica napus , Leptosphaeria , Phoma , Enfermedades de las Plantas/microbiología
2.
Pest Manag Sci ; 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36327145

RESUMEN

BACKGROUND: Phoma stem canker is caused by two coexisting pathogens, Leptosphaeria maculans and L. biglobosa. They coexist because of their temporal and spatial separations, which are associated with the differences in timing of their ascospore release. L. maculans produces sirodesmin PL, while L. biglobosa does not. However, their interaction/coexistence in terms of secondary metabolite production is not understood. RESULTS: Secondary metabolites were extracted from liquid cultures, L. maculans only (Lm only), L. biglobosa only (Lb only), L. maculans and L. biglobosa simultaneously (Lm&Lb) or sequentially 7 days later (Lm+Lb). Sirodesmin PL or its precursors were identified in extracts from 'Lm only' and 'Lm+Lb', but not from 'Lm&Lb'. Metabolites from 'Lb only', 'Lm&Lb' or 'Lm+Lb' caused significant reductions in L. maculans colony area. However, only the metabolites containing sirodesmin PL caused a significant reduction to L. biglobosa colony area. When oilseed rape cotyledons were inoculated with conidia of 'Lm only', 'Lb only' or 'Lm&Lb', 'Lm only' produced large gray lesions, while 'Lm&Lb' produced small dark lesions similar to lesions caused by 'Lb only'. Sirodesmin PL was found only in the plant extracts from 'Lm only'. These results suggest that L. biglobosa prevents the production of sirodesmin PL and its precursors by L. maculans when they grow simultaneously in vitro or in planta. CONCLUSION: For the first time, L. biglobosa has been shown to inhibit the production of sirodesmin PL by L. maculans when interacting simultaneously with L. maculans either in vitro or in planta. This antagonistic effect of interspecific interaction may affect their coexistence and subsequent disease progression and management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Mycol Res ; 110(Pt 6): 725-33, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16765034

RESUMEN

The effects of osmotic and matric potential on mycelial growth, sclerotial production and germination of isolates of Rhizoctonia solani [anastomosis groups (AGs) 2-1 and 3] from potato were studied on potato dextrose agar (PDA) adjusted osmotically with sodium chloride, potassium chloride, glycerol, and matrically with polyethylene glycol (PEG) 6000. All isolates from AGs 2-1 and AG-3 exhibited fastest mycelial growth on unamended PDA (-0.4MPa), and growth generally declined with decreasing osmotic and matric potentials. Growth ceased between -3.5 and -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media, with slight differences between isolates and osmotica. Sclerotium yield declined with decreasing osmotic potential, and formation by AG 2-1 and AG-3 isolates ceased between -1.5 and -3.0MPa and -2.5 and -3.5MPa, respectively. On matrically adjusted media, sclerotial formation by AG 2-1 isolates ceased at -0.8MPa, whereas formation by AG-3 isolates ceased at the lower matric potential of -1.5MPa. Sclerotial germination also declined with decreasing osmotic and matric potential, with total inhibition occurring over the range -3.0 to -4.0MPa on osmotically adjusted media, and at -2.0MPa on matrically adjusted media. In soil, mycelial growth and sclerotial germination of AG-3 isolates declined with decreasing total water potential, with a minimum potential of -6.3MPa permitting both growth and germination. The relevance of these results to the behaviour of R. solani AGs in soil and their pathogenicity on potato is discussed.


Asunto(s)
Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Rhizoctonia/fisiología , Cloruro de Sodio/farmacología , Solanum tuberosum/microbiología , Agua/farmacología , Agar , Medios de Cultivo , Presión Osmótica , Rhizoctonia/crecimiento & desarrollo , Rhizoctonia/aislamiento & purificación , Suelo/análisis , Esporas Fúngicas/fisiología , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA