Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 6: CD012583, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29906322

RESUMEN

BACKGROUND: Venous leg ulcers are open skin wounds on the lower leg which can be slow to heal, and are both painful and costly. The point prevalence of open venous leg ulcers in the UK is about 3 cases per 10,000 people, and many people experience recurrent episodes of prolonged ulceration. First-line treatment for venous leg ulcers is compression therapy, but a wide range of dressings and topical treatments are also used. This diversity of treatments makes evidence-based decision-making challenging, and a clear and current overview of all the evidence is required. This review is a network meta-analysis (NMA) which assesses the probability of complete ulcer healing associated with alternative dressings and topical agents. OBJECTIVES: To assess the effects of (1) dressings and (2) topical agents for healing venous leg ulcers in any care setting and to rank treatments in order of effectiveness, with assessment of uncertainty and evidence quality. SEARCH METHODS: In March 2017 we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also scanned reference lists of relevant included studies as well as reviews, meta-analyses, guidelines and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting. We updated this search in March 2018; as a result several studies are awaiting classification. SELECTION CRITERIA: We included published or unpublished randomised controlled trials (RCTs) that enrolled adults with venous leg ulcers and compared the effects of at least one of the following interventions with any other intervention in the treatment of venous leg ulcers: any dressing, or any topical agent applied directly to an open venous leg ulcer and left in situ. We excluded from this review dressings attached to external devices such as negative pressure wound therapies, skin grafts, growth factors and other biological agents, larval therapy and treatments such as laser, heat or ultrasound. Studies were required to report complete wound healing to be eligible. DATA COLLECTION AND ANALYSIS: Two review authors independently performed study selection, 'Risk of bias' assessment and data extraction. We conducted this NMA using frequentist meta-regression methods for the efficacy outcome; the probability of complete healing. We assumed that treatment effects were similar within dressings classes (e.g. hydrocolloid, foam). We present estimates of effect with their 95% confidence intervals (CIs) for individual treatments focusing on comparisons with widely used dressing classes, and we report ranking probabilities for each intervention (probability of being the best, second best, etc treatment). We assessed the certainty (quality) of the body of evidence using GRADE for each network comparison and for the network as whole. MAIN RESULTS: We included 78 RCTs (7014 participants) in this review. Of these, 59 studies (5156 participants, 25 different interventions) were included in the NMA; resulting in 40 direct contrasts which informed 300 mixed-treatment contrasts.The evidence for the network as a whole was of low certainty. This judgement was based on the sparsity of the network leading to imprecision and the general high risk of bias in the included studies. Sensitivity analyses also demonstrated instability in key aspects of the network and results are reported for the extended sensitivity analysis. Evidence for individual contrasts was mainly judged to be low or very low certainty.The uncertainty was perpetuated when the results were considered by ranking the treatments in terms of the probability that they were the most effective for ulcer healing, with many treatments having similar, low, probabilities of being the best treatment. The two most highly-ranked treatments both had more than 50% probability of being the best (sucralfate and silver dressings). However, the data for sucralfate was from one small study, which means that this finding should be interpreted with caution. When exploring the data for silver and sucralfate compared with widely-used dressing classes, there was some evidence that silver dressings may increase the probability of venous leg ulcer healing, compared with nonadherent dressings: RR 2.43, 95% CI 1.58 to 3.74 (moderate-certainty evidence in the context of a low-certainty network). For all other combinations of these five interventions it was unclear whether the intervention increased the probability of healing; in each case this was low- or very low-certainty evidence as a consequence of one or more of imprecision, risk of bias and inconsistency. AUTHORS' CONCLUSIONS: More research is needed to determine whether particular dressings or topical agents improve the probability of healing of venous leg ulcers. However, the NMA is uninformative regarding which interventions might best be included in a large trial, largely because of the low certainty of the whole network and of individual comparisons.The results of this NMA focus exclusively on complete healing; whilst this is of key importance to people living with venous leg ulcers, clinicians may wish to take into account other patient-important outcomes and factors such as patient preference and cost.


Asunto(s)
Antiulcerosos/uso terapéutico , Vendajes , Plata/uso terapéutico , Sucralfato/uso terapéutico , Úlcera Varicosa/terapia , Cicatrización de Heridas , Anciano , Anciano de 80 o más Años , Vendas Hidrocoloidales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Sensibilidad y Especificidad
2.
Cochrane Database Syst Rev ; 2: CD012653, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29406579

RESUMEN

BACKGROUND: Surgical site infection (SSI) rates vary from 1% to 5% in the month following surgery. Due to the large number of surgical procedures conducted annually, the costs of these SSIs can be considerable in financial and social terms. Many interventions are used with the aim of reducing the risk of SSI in people undergoing surgery. These interventions can be broadly delivered at three stages: preoperatively, intraoperatively and postoperatively. The intraoperative interventions are largely focused on decontamination of skin using soap and antiseptics; the use of barriers to prevent movement of micro-organisms into incisions; and optimising the patient's own bodily functions to promote best recovery. Both decontamination and barrier methods can be aimed at people undergoing surgery and operating staff. Other interventions focused on SSI prevention may be aimed at the surgical environment and include methods of theatre cleansing and approaches to managing theatre traffic. OBJECTIVES: To present an overview of Cochrane Reviews of the effectiveness and safety of interventions, delivered during the intraoperative period, aimed at preventing SSIs in all populations undergoing surgery in an operating theatre. METHODS: Published Cochrane systematic reviews reporting the effectiveness of interventions delivered during the intraoperative period in terms of SSI prevention were eligible for inclusion in this overview. We also identified Cochrane protocols and title registrations for future inclusion into the overview. We searched the Cochrane Library on 01 July 2017. Two review authors independently screened search results and undertook data extraction and 'Risk of bias' and certainty assessment. We used the ROBIS (risk of bias in systematic reviews) tool to assess the quality of included reviews, and we used GRADE methods to assess the certainty of the evidence for each outcome. We summarised the characteristics of included reviews in the text and in additional tables. MAIN RESULTS: We included 32 Cochrane Reviews in this overview: we judged 30 reviews as being at low risk of bias and two at unclear risk of bias. Thirteen reviews had not been updated in the past three years. Two reviews had no relevant data to extract. We extracted data from 30 reviews with 349 included trials, totaling 73,053 participants. Interventions assessed included gloving, use of disposable face masks, patient oxygenation protocols, use of skin antiseptics for hand washing and patient skin preparation, vaginal preparation, microbial sealants, methods of surgical incision, antibiotic prophylaxis and methods of skin closure. Overall, the GRADE certainty of evidence for outcomes was low or very low. Of the 77 comparisons providing evidence for the outcome of SSI, seven provided high- or moderate-certainty evidence, 39 provided low-certainty evidence and 31 very low-certainty evidence. Of the nine comparisons that provided evidence for the outcome of mortality, five provided low-certainty evidence and four very low-certainty evidence.There is high- or moderate-certainty evidence for the following outcomes for these intraoperative interventions. (1) Prophylactic intravenous antibiotics administered before caesarean incision reduce SSI risk compared with administration after cord clamping (10 trials, 5041 participants; risk ratio (RR) 0.59, 95% confidence interval (CI) 0.44 to 0.81; high-certainty evidence - assessed by review authors). (2) Preoperative antibiotics reduce SSI risk compared with placebo after breast cancer surgery (6 trials, 1708 participants; RR 0.74, 95% CI 0.56 to 0.98; high-certainty evidence - assessed by overview authors). (3) Antibiotic prophylaxis probably reduce SSI risk in caesarean sections compared with no antibiotics (82 relevant trials, 14,407 participants; RR 0.40, 95% CI 0.35 to 0.46; moderate-certainty evidence; downgraded once for risk of bias - assessed by review authors). (4) Antibiotic prophylaxis probably reduces SSI risk for hernia repair compared with placebo or no treatment (17 trials, 7843 participants; RR 0.67, 95% CI 0.54 to 0.84; moderate-certainty evidence; downgraded once for risk of bias - assessed by overview authors); (5) There is currently no clear difference in the risk of SSI between iodine-impregnated adhesive drapes compared with no adhesive drapes (2 trials, 1113 participants; RR 1.03, 95% CI 0.66 to 1.60; moderate-certainty evidence; downgraded once for imprecision - assessed by review authors); (6) There is currently no clear difference in SSI risk between short-term compared with long-term duration antibiotics in colorectal surgery (7 trials; 1484 participants; RR 1.05 95% CI 0.78 to 1.40; moderate-certainty evidence; downgraded once for imprecision - assessed by overview authors). There was only one comparison showing negative effects associated with the intervention: adhesive drapes increase the risk of SSI compared with no drapes (5 trials; 3082 participants; RR 1.23, 95% CI 1.02 to 1.48; high-certainty evidence - rated by review authors). AUTHORS' CONCLUSIONS: This overview provides the most up-to-date evidence on use of intraoperative treatments for the prevention of SSIs from all currently published Cochrane Reviews. There is evidence that some interventions are useful in reducing SSI risk for people undergoing surgery, such as antibiotic prophylaxis for caesarean section and hernia repair, and also the timing of prophylactic intravenous antibiotics administered before caesarean incision. Also, there is evidence that adhesive drapes increase SSI risk. Evidence for the many other treatment choices is largely of low or very low certainty and no quality-of-life or cost-effectiveness data were reported. Future trials should elucidate the relative effects of some treatments. These studies should focus on increasing participant numbers, using robust methodology and being of sufficient duration to adequately assess SSI. Assessment of other outcomes such as mortality might also be investigated as part of non-experimental prospective follow-up of people with SSI of different severity, so the risk of death for different subgroups can be better understood.


Asunto(s)
Cuidados Intraoperatorios/métodos , Infección de la Herida Quirúrgica/prevención & control , Humanos , Literatura de Revisión como Asunto
3.
Cochrane Database Syst Rev ; 10: CD012234, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29083473

RESUMEN

BACKGROUND: Surgical site infections (SSIs) are wound infections that occur after an operative procedure. A preventable complication, they are costly and associated with poorer patient outcomes, increased mortality, morbidity and reoperation rates. Surgical wound irrigation is an intraoperative technique, which may reduce the rate of SSIs through removal of dead or damaged tissue, metabolic waste, and wound exudate. Irrigation can be undertaken prior to wound closure or postoperatively. Intracavity lavage is a similar technique used in operations that expose a bodily cavity; such as procedures on the abdominal cavity and during joint replacement surgery. OBJECTIVES: To assess the effects of wound irrigation and intracavity lavage on the prevention of surgical site infection (SSI). SEARCH METHODS: In February 2017 we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE; Ovid Embase and EBSCO CINAHL Plus. We also searched three clinical trials registries and references of included studies and relevant systematic reviews. There were no restrictions on language, date of publication or study setting. SELECTION CRITERIA: We included all randomised controlled trials (RCTs) of participants undergoing surgical procedures in which the use of a particular type of intraoperative washout (irrigation or lavage) was the only systematic difference between groups, and in which wounds underwent primary closure. The primary outcomes were SSI and wound dehiscence. Secondary outcomes were mortality, use of systemic antibiotics, antibiotic resistance, adverse events, re-intervention, length of hospital stay, and readmissions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed studies for inclusion at each stage. Two review authors also undertook data extraction, assessment of risk of bias and GRADE assessment. We calculated risk ratios or differences in means with 95% confidence intervals where possible. MAIN RESULTS: We included 59 RCTs with 14,738 participants. Studies assessed comparisons between irrigation and no irrigation, between antibacterial and non-antibacterial irrigation, between different antibiotics, different antiseptics or different non-antibacterial agents, or between different methods of irrigation delivery. No studies compared antiseptic with antibiotic irrigation. Surgical site infectionIrrigation compared with no irrigation (20 studies; 7192 participants): there is no clear difference in risk of SSI between irrigation and no irrigation (RR 0.87, 95% CI 0.68 to 1.11; I2 = 28%; 14 studies, 6106 participants). This would represent an absolute difference of 13 fewer SSIs per 1000 people treated with irrigation compared with no irrigation; the 95% CI spanned from 31 fewer to 10 more SSIs. This was low-certainty evidence downgraded for risk of bias and imprecision.Antibacterial irrigation compared with non-antibacterial irrigation (36 studies, 6163 participants): there may be a lower incidence of SSI in participants treated with antibacterial irrigation compared with non-antibacterial irrigation (RR 0.57, 95% CI 0.44 to 0.75; I2 = 53%; 30 studies, 5141 participants). This would represent an absolute difference of 60 fewer SSIs per 1000 people treated with antibacterial irrigation than with non-antibacterial (95% CI 35 fewer to 78 fewer). This was low-certainty evidence downgraded for risk of bias and suspected publication bias.Comparison of irrigation of two agents of the same class (10 studies; 2118 participants): there may be a higher incidence of SSI in participants treated with povidone iodine compared with superoxidised water (Dermacyn) (RR 2.80, 95% CI 1.05 to 7.47; low-certainty evidence from one study, 190 participants). This would represent an absolute difference of 95 more SSIs per 1000 people treated with povidone iodine than with superoxidised water (95% CI 3 more to 341 more). All other comparisons found low- or very low-certainty evidence of no clear difference between groups.Comparison of two irrigation techniques: two studies compared standard (non-pulsed) methods with pulsatile methods. There may, on average, be fewer SSIs in participants treated with pulsatile methods compared with standard methods (RR 0.34, 95% CI 0.19 to 0.62; I2 = 0%; two studies, 484 participants). This would represent an absolute difference of 109 fewer SSIs occurring per 1000 with pulsatile irrigation compared with standard (95% CI 62 fewer to 134 fewer). This was low-certainty evidence downgraded twice for risks of bias across multiple domains. Wound dehiscenceFew studies reported wound dehiscence. No comparison had evidence for a difference between intervention groups. This included comparisons between irrigation and no irrigation (one study, low-certainty evidence); antibacterial and non-antibacterial irrigation (three studies, very low-certainty evidence) and pulsatile and standard irrigation (one study, low-certainty evidence). Secondary outcomesFew studies reported outcomes such as use of systemic antibiotics and antibiotic resistance and they were poorly and incompletely reported. There was limited reporting of mortality; this may have been partially due to failure to specify zero events in participants at low risk of death. Adverse event reporting was variable and often limited to individual event types. The evidence for the impact of interventions on length of hospital stay was low or moderate certainty; where differences were seen they were too small to be clinically important. AUTHORS' CONCLUSIONS: The evidence base for intracavity lavage and wound irrigation is generally of low certainty. Therefore where we identified a possible difference in the incidence of SSI (in comparisons of antibacterial and non-antibacterial interventions, and pulsatile versus standard methods) these should be considered in the context of uncertainty, particularly given the possibility of publication bias for the comparison of antibacterial and non-antibacterial interventions. Clinicians should also consider whether the evidence is relevant to the surgical populations under consideration, the varying reporting of other prophylactic antibiotics, and concerns about antibiotic resistance.We did not identify any trials that compared an antibiotic with an antiseptic. This gap in the direct evidence base may merit further investigation, potentially using network meta-analysis; to inform the direction of new primary research. Any new trial should be adequately powered to detect a difference in SSIs in eligible participants, should use robust research methodology to reduce the risks of bias and internationally recognised criteria for diagnosis of SSI, and should have adequate duration and follow-up.


Asunto(s)
Infección de la Herida Quirúrgica/prevención & control , Absceso/epidemiología , Antibacterianos/administración & dosificación , Antiinfecciosos Locales/administración & dosificación , Combinación de Medicamentos , Humanos , Ácido Hipocloroso/administración & dosificación , Incidencia , Povidona Yodada/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Hipoclorito de Sodio/administración & dosificación , Dehiscencia de la Herida Operatoria/epidemiología , Infección de la Herida Quirúrgica/epidemiología , Irrigación Terapéutica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...