Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Plants (Basel) ; 13(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38475593

RESUMEN

Mars exploration will foresee the design of bioregenerative life support systems (BLSSs), in which the use/recycle of in situ resources might allow the production of food crops. However, cultivation on the poorly-fertile Mars regolith will be very challenging. To pursue this goal, we grew potato (Solanum tuberosum L.) plants on the MMS-1 Mojave Mars regolith simulant, pure (R100) and mixed with green compost at 30% (R70C30), in a pot in a cold glasshouse with fertigation. For comparison purposes, we also grew plants on a fluvial sand, pure (S100) and amended with 30% of compost (S70C30), a volcanic soil (VS) and a red soil (RS). We studied the fertility dynamics in the substrates over time and the tuber nutritional quality. We investigated nutrient bioavailability and fertility indicators in the substrates and the quality of potato tubers. Plants completed the life cycle on R100 and produced scarce but nutritious tubers, despite many critical simulant properties. The compost supply enhanced the MMS-1 chemical/physical fertility and determined a higher tuber yield of better nutritional quality. This study demonstrated that a compost-amended Mars simulant could be a proper substrate to produce food crops in BLSSs, enabling it to provide similar ecosystem services of the studied terrestrial soils.

2.
Foods ; 13(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38254490

RESUMEN

Around two million tons of olive oil are produced in Europe annually, with Portugal being among the top five European olive oil-producing countries. Olive oil production results in a substantial amount of waste in the form of olive leaves. These discarded olive leaves contain valuable phenolic compounds with antioxidant, anti-inflammatory, hypoglycaemic, neuroprotective, and antiproliferative properties. Due to their richness in polyphenols with health-promoting properties, olive leaves can be considered a potential functional food ingredient. Thus, sustainable practices for reusing olive leaf waste are in demand. In this study, the polyphenolic content in olive leaves from different Portuguese locations was determined using HPLC-UV-Vis after defining the best fit-for-purpose liquid extraction strategy. The differences in the in vitro antioxidant activity in these samples were determined by several methodologies based on radical scavenging (against 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-2-picrylhydrazyl (DPPH), and peroxyl radical (ORAC)) and on reducing properties (cupric-reducing antioxidant capacity (CUPRAC), and Folin-Ciocalteu assay (FC)), to unveil the relationship between the profile and quantity of polyphenols with antioxidant mechanisms and their capacity. At last, the stability of extracted compounds upon lyophilization and exposition to surrogate biological fluids was assessed, envisioning the future incorporation of olive leaves extracted compounds in food products.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38064145

RESUMEN

Cannabidiol (CBD) has gained significant attention as a complementary and alternative medicine due to its promising therapeutic properties. However, CBD faces obstacles when administered orally due to its poor solubility in water, leading to limited absorption into the bloodstream and low and variable bioavailability. Therefore, the development of innovative delivery approaches that can enhance CBD's bioavailability, facilitate administration, and promote patient adherence is crucial. We propose a new approach for buccal delivery of CBD based on a self-assembling nanoemulsion (NE) made of a mixture of surfactants (Tween 80 and Labrasol) and medium chain triglycerides (MCTs). The NE formulation showed properties suitable for buccal administration, including appropriate size, CBD content, and surface properties, and, if compared to a CBD-MCT solution, it exhibited better control of administered doses, faster dissolution in buccal medium, and enhanced stability. The CBD-NE effectively released its active load within 5 h, remained stable even when diluted in simulated buccal fluids, and could be easily administered through a commercially available spray, providing consistent and reproducible doses of NE with optimized properties. In vitro permeation studies demonstrated that the CBD-NE facilitated swift and consistent permeation through the buccal mucosa, resulting in a higher concentration in the acceptor compartment compared to CBD-MCT. Furthermore, the in vivo study in mice showed that a single buccal administration of CBD-NE led to a quicker onset of action than a CBD solution in MCT, while maintaining the same plasma levels over time and leading to typically higher plasma concentrations compared to those usually achieved through oral administration. In conclusion, our CBD-NE represents a promising alternative formulation strategy for buccal CBD administration, overcoming the challenges associated with conventional formulations such as variable bioavailability and low control of administered doses.

4.
Antioxidants (Basel) ; 12(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38136227

RESUMEN

The zucchini (Cucurbita pepo L.) plant is well known for its fruits; however, its edible flowers appear to contain several active molecules, including polyphenols, which display poor bioaccessibility after gastrointestinal digestion (GiD). This study explores the bioaccessibility of polyphenols and antioxidant capacity within zucchini flower extracts during simulated GiD. Two nutraceutical formulations, non-acid-resistant (NAcR) and acid-resistant (AcR) capsules containing an aqueous extract of zucchini flowers, were employed in this investigation. Additionally, high-resolution mass spectrometry (Q-Orbitrap HRMS) was utilized for a comprehensive analysis of their polyphenolic constituents. Predominantly, rutin and isorhamnetin-3-rutinoside were the most prevalent compounds detected in the samples (514.62 and 318.59 mg/kg, respectively). Following in vitro GiD, the extract encapsulated in AcR capsules exhibited enhanced bioaccessibility during both the duodenal (189.2 and 162.5 mg GAE/100 g, respectively) and colonic stages (477.4 and 344.7 mg GAE/100 g, respectively) when compared with the extract encapsulated in NAcR capsules. This suggests that gastric acidity adversely impacted the release of polyphenols from NAcR capsules. In conclusion, the aqueous zucchini flower extract emerges as a promising and readily accessible source of dietary polyphenols. Moreover, the utilization of AcR capsules presents a potential nutraceutical formulation strategy to improve polyphenol bioaccessibility, enhancing its applicability in promoting health and well-being.

5.
Toxins (Basel) ; 15(9)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37755988

RESUMEN

Mycotoxins are a major source of contamination in cereals, posing risks to human health and causing significant economic losses to the industry. A comprehensive strategy for the analysis of 21 mycotoxins in Italian cereal grain samples (n = 200) was developed using a simple and quick sample preparation method combined with ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC Q-Orbitrap HRMS). The proposed method showed some advantages, such as multi-mycotoxin analyses with simple sample preparation, fast determination, and high sensitivity. The analysis of the sample revealed the presence of 11 mycotoxins, with α-zearalenol being the most frequently detected, while deoxynivalenol exhibited the highest contamination level. Furthermore, co-occurrence was identified in 15.5% of the samples under analysis. Among these, 13% of the samples reported the simultaneous presence of two mycotoxins, while 2.5% showed the co-occurrence of three mycotoxins. Currently, there has been a renewed interest in guaranteeing the quality and safety of products intended for human consumption. This study holds significant value due to its ability to simultaneously detect multiple mycotoxins within a complex matrix. Furthermore, it provides findings regarding the occurrence and co-occurrence of emerging mycotoxins that currently lack regulation under the existing European Commission Regulation.


Asunto(s)
Contaminación de Medicamentos , Micotoxinas , Humanos , Cromatografía Líquida de Alta Presión , Grano Comestible , Espectrometría de Masas
6.
Plants (Basel) ; 12(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37514243

RESUMEN

The success of Space missions and the efficacy of colonizing extraterrestrial environments depends on ensuring adequate nutrition for astronauts and autonomy from terrestrial resources. A balanced diet incorporating premium quality fresh foods, such as microgreens, is essential to the mental and physical well-being of mission crews. To improve the nutritional intake of astronaut meals, two levels of potassium iodide (KI; 4 µM and 8 µM) and an untreated control were assessed for iodine (I) biofortification, and overall nutraceutical profile of four microgreens: tatsoi (Brassica rapa L. subsp. narinosa), coriander (Coriandrum sativum L.), green basil, and purple basil (Ocimum basilicum L.). A dose-dependent increase in I was observed at 8 µM for all species, reaching concentrations of 200.73, 118.17, 93.97, and 82.70 mg kg-1 of dry weight, in tatsoi, coriander, purple basil, and green basil, respectively. Across species, I biofortification slightly reduced fresh yield (-7.98%) while increasing the antioxidant activity (ABTS, FRAP, and DPPH). LC-MS/MS Q extractive orbitrap analysis detected 10 phenolic acids and 23 flavonoids among microgreen species. The total concentration of phenolic acids increased (+28.5%) in purple basil at 8 µM KI, while total flavonoids in coriander increased by 23.22% and 34.46% in response to 4 and 8 µM KI, respectively. Both doses of KI increased the concentration of total polyphenols in all species by an average of 17.45%, compared to the control.

7.
Foods ; 12(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37297387

RESUMEN

Food supplements (FS) containing red yeast rice (RYR) are largely employed to reduce lipid levels in the blood. The main ingredient responsible for biological activity is monacolin K (MoK), a natural compound with the same chemical structure as lovastatin. Concentrated sources of substances with a nutritional or physiological effect are marketed in "dose" form as food supplements (FS). The quality profile of the "dosage form" of FS is not defined in Europe, whereas some quality criteria are provided in the United States. Here, we evaluate the quality profile of FS containing RYR marketed in Italy as tablets or capsules running two tests reported in The European Pharmacopoeia 11 Ed. and very close to those reported in the USP. The results highlighted variations in dosage form uniformity (mass and MoK content) compliant with The European Pharmacopoeia 11 Ed. specifications, whereas the time needed for disintegrating tablets was longer for 44% of the tested samples. The bioaccessibility of MoK was also investigated to obtain valuable data on the biological behaviour of the tested FS. In addition, a method for citrinin (CIT) determination was optimized and applied to real samples. None of the analyzed samples demonstrated CIT contamination (LOQ set at 6.25 ng/mL). Considering the widespread use of FS, our data suggest that greater attention should be paid by fabricants and regulatory authorities to ensure the quality profile and the safe consumption of marketed products.

8.
Plants (Basel) ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36986947

RESUMEN

The effects of climate change have a great impact on the Mediterranean regions which are experiencing an increase in drought periods with extreme temperatures. Among the various solutions reported to reduce the damage caused by extreme environmental conditions on olive plants, the application of anti-transpirant products is widespread. In an increasingly current scenario of climate change, this study was designed to evaluate the effect of kaolin on the quantitative and qualitative parameters of drupes and oil in a little-known olive cultivar known as "Racioppella", belonging to the autochthonous germplasm of Campania (Southern Italy). To this purpose, the determination of maturation index, olive yield/plant, and bioactive components analysis (anthocyanins, carotenoids, total polyphenols, antioxidant activity, and fatty acids) were carried out. Kaolin applications showed no statistically significant differences in terms of production/plant while a significant increase in the drupe oil content was observed. Kaolin treatments resulted in increased anthocyanins (+24%) and total polyphenols (+60%) content and at the same time a significant increase in the antioxidant activity (+41%) of drupes was recorded. As far as oil is concerned, the results showed an increase in monounsaturated fatty acids, oleic and linoleic acids, and total polyphenols (+11%). On the basis of the results obtained, we can conclude that kaolin treatment can be considered as a sustainable solution to improve qualitative parameters in olive drupes and oil.

9.
Nutrients ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771347

RESUMEN

The definition of metabolic syndrome (MetS) has undergone several changes over the years due to the difficulty in establishing universal criteria for it. Underlying the disorders related to MetS is almost invariably a pro-inflammatory state related to altered glucose metabolism, which could lead to elevated cardiovascular risk. Indeed, the complications closely related to MetS are cardiovascular diseases (CVDs) and type 2 diabetes (T2D). It has been observed that the predisposition to metabolic syndrome is modulated by complex interactions between human microbiota, genetic factors, and diet. This review provides a summary of the last decade of literature related to three principal aspects of MetS: (i) the syndrome's definition and classification, pathophysiology, and treatment approaches; (ii) prediction and diagnosis underlying the biomarkers identified by means of advanced methodologies (NMR, LC/GC-MS, and LC, LC-MS); and (iii) the role of foods and food components in prevention and/or treatment of MetS, demonstrating a possible role of specific foods intake in the development of MetS.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Síndrome Metabólico/prevención & control , Síndrome Metabólico/complicaciones , Diabetes Mellitus Tipo 2/prevención & control , Diabetes Mellitus Tipo 2/complicaciones , Dieta , Alimentos , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Factores de Riesgo
10.
Toxins (Basel) ; 15(2)2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36828462

RESUMEN

Breakfast cereals have been reported as one of the most susceptible cereal-based products to mycotoxin contamination. These products pose an even more concerning risk to human health since they are marketed as a ready-to-eat product and one of its main population targets is children. Therefore, the main goal of the present study was to conduct a monitoring study of multiple mycotoxins contained in breakfast cereals samples marketed in Italy through ultra-high performance liquid chromatography coupled to high-resolution Q-Orbitrap tandem mass spectrometry. An acetonitrile-based methodology was validated for quantifying 24 mycotoxins in breakfast cereals. The results showed that 93% of the samples contained at least one mycotoxin. Beauvericin was the most prevalent toxin (86% of samples; mean concentration: 30.66 µg/kg), although the main enniatins, zearalenone-derived forms and fumonisins B1 and B2 were also detected. Co-occurrence was observed in 73% of the positive samples with up to five mycotoxins simultaneously occurring, mainly due to the combination of beauvericin and enniatins. These results provided more evidence about the high impact of non-regulated mycotoxins, such as the emerging Fusarium toxins, in breakfast cereals, and encourages the development of analytical methodologies including these and zearalenone-derived forms that could be going unnoticed with current methodologies.


Asunto(s)
Micotoxinas , Zearalenona , Niño , Humanos , Micotoxinas/análisis , Grano Comestible/química , Zearalenona/análisis , Desayuno , Contaminación de Alimentos/análisis , Cromatografía Liquida , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Italia
11.
Insect Sci ; 30(4): 991-1010, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36433821

RESUMEN

Bioconversion is a biological process by which organic materials are converted into products with higher biological and commercial value. During its larval stage the black soldier fly Hermetia illucens is extremely voracious and can feed on a wide variety of organic materials. To study the impact of different fruit byproducts on the insect's growth, final larval biomass, substrate reduction, bioconversion parameters, and larval nutritional composition, 10 000 black soldier fly larvae (BSFL) were reared on 7.0 kg of one of three substrates (strawberry, tangerine, or orange) or on a standard diet as a control. The results highlight that BSFL can successfully feed and grow on each of these diets, though their development time, growth rate, and final biomass were differently impacted by the substrates, with strawberry being the most suitable. The lipid and protein contents of BSFL were similar among larvae fed on different substrates; however, major differences were detected in ash, micronutrient, fiber, fatty acid, and amino acid contents. Overall, the results indicate that fruit waste management through the BSFL bioconversion process represents a commercially promising resource for regional and national agrifood companies. Our study offers new perspectives for sustainable and environmentally friendly industrial development by which fruit byproducts or waste might be disposed of or unconventionally enhanced to create secondary products of high biological and economic value, including BSFL biomass as animal feed or, in perspective, as alternative protein source for human nutrition.


Asunto(s)
Dípteros , Humanos , Animales , Frutas , Larva , Dieta , Alimentación Animal/análisis
12.
Food Chem ; 408: 135244, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565550

RESUMEN

The use of veterinary drugs (VDs) is widely administered to animals for both therapeutic and prophylactic purposes. However, their improper use may involve their occurrence in the final products intended for human consumption. In this scientific work, a method for the investigation of target (n = 30) VDs residues and retrospective suspect screening followed by confirmation using analytical standards of others 38 contaminants in ready-to-eat cooked ham by ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) was developed. The extraction was performed based on the QuEChERS approach and validated in accordance with the European Regulation 2021/808. The application of the in-house validated method to ready-to-eat cooked ham showed the occurrence of fourteen VDs residues. Despite the important incidence, the concentration levels found were below the maximum residue limits set for VDs in porcine muscle, except for colchicine. Constant monitoring of animals derived food is strongly recommended to ensure the food safety of consumers.


Asunto(s)
Inocuidad de los Alimentos , Drogas Veterinarias , Humanos , Animales , Porcinos , Cromatografía Líquida de Alta Presión/métodos , Estudios Retrospectivos , Límite de Detección , Espectrometría de Masas/métodos , Drogas Veterinarias/análisis
13.
Cell Biol Toxicol ; 39(4): 1275-1295, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36066700

RESUMEN

Aflatoxin B1 (AFB1), produced by fungi of the genus Aspergillus, is the most toxic and carcinogenic mycotoxin among the classes of aflatoxins. Previous research showed that AFB1 affects vitamin D receptor (VDR) expression. In the present study, integrated computational and experimental studies were carried out to investigate how AFB1 can interfere with Vitamin D signalling. A competitive antagonism of AFB1 toward RXRα and VDR was hypothesized by comparing the docked complex of AFB1/RXRα and AFB1/VDR ligand-binding domain (LBD) with the X-ray structures of RXRα and VDR bound to known ligands. Accordingly, we demonstrated that AFB1 can affect vitamin D-mediated transcriptional activation of VDR by impairing the formation of protein complexes containing both VDR-RXRα and RXRα/RAR and affecting the subcellular localization of VDR and RXRα. As a whole, our data indicate that AFB1 can interfere with different molecular pathways triggered by vitamin D with an antagonistic mechanism of action.


Asunto(s)
Aflatoxina B1 , Vitamina D , Vitamina D/farmacología , Vitamina D/metabolismo , Activación Transcripcional , Vitaminas , Unión Proteica
14.
Antioxidants (Basel) ; 11(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36552661

RESUMEN

The water-based extract of broad bean hulls contains several bioactive molecules, including polyphenols well-known to exert antioxidant activity, which could justify its use in nutraceutical formulations. Hence, the current investigation aimed to establish the polyphenolic profile of water-based extracts from broad bean hulls through UHPLC-Q-Orbitrap HRMS analysis. The findings highlighted that p-coumaric acid, chlorogenic acid, and epicatechin were the most common compounds found in the tested extracts, being quantified at a mean concentration of 42.1, 32.6, and 31.2 mg/100 g, respectively. Moreover, broad bean hull extracts were encapsulated into a nutraceutical formulation, after which the antioxidant properties and the bioaccessibility of phenolic compounds during the simulated gastrointestinal (GI) process were investigated and compared with the digested non-encapsulated extract. The data highlighted that following the GI process, the capsules were able to preserve active compounds from the adverse effects of digestion, resulting in a greater antioxidant capacity and polyphenol bioaccessibility in the duodenal and colonic phases, compared with the non-encapsulated extract. Our results showed that the water extract from broad bean hulls may be considered a valuable source of natural polyphenolic compounds; in addition, the use of a gastric-resistant capsule could be a suitable alternative to transport these bioactive compounds to the target tissues.

15.
Antioxidants (Basel) ; 11(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36552667

RESUMEN

Coffee consumption positively influences colon health. Conversely, high levels of tryptophan metabolites such as skatole released from intestinal putrefactive fermentation in the presence of excessive dietary animal protein intake, and gut microbiota alterations, may have several adverse effects, including the development of colorectal cancer. Therefore, this study aimed to elucidate the potential protective effects of coffee in the presence of different skatole levels. The results showed that skatole exposure induced reduced cell viability and oxidative stress in the HT-29 human colon cancer cell line. However, co-treatment of cells with skatole and coffee samples was able to reduce ROS production (up to 45% for espresso) compared to cells not treated with coffee. Real-time PCR analysis highlighted that treating HT-29 cells with skatole increased the levels of inflammatory cytokines and chemokines TNF-α, IL-1ß, IL-8, and IL12, whereas exposure to coffee extracts in cells that were pretreated with skatole showed anti-inflammatory effects with decreased levels of these cytokines. These findings demonstrate that coffee may counteract the adverse effects of putrefactive compounds by modulating oxidative stress and exerting anti-inflammatory activity in colonocytes, thus suggesting that coffee intake could improve health conditions in the presence of altered intestinal microbiota metabolism.

16.
Food Res Int ; 161: 111863, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36192985

RESUMEN

Hemp (Cannabis sativa L.) is a multi-functional crop cultivated for fiber, seeds, or phytochemical extraction. Once a major industrial crop in several agro-environments, its cultivation strongly declined in developed countries since World War II. Exploiting hemp vegetative tissue as innovative food has remained largely unexplored. The current work examined the potential production of hemp microgreens. Six cultivars were assessed for yield and composition of organic acids, amino acids, polyphenols and phytocannabinoids, through IC, FLD-HPLC and UHPLC-HRMS, respectively. Bioactive composition was strongly related to the hemp variety. 'Silvana' demonstrated the highest total content of amino acids and essential amino acids, high concentrations of cannflavin A and B, and moderate levels of cannabidiol and cannabigerol. 'Finola' distinguished by the highest concentration of cannflavins and total polyphenols, and the lowest levels of Δ9-THC. Regardless of varietal differences, hemp microgreens proved widely safe in terms of Δ9-THC content.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Aminoácidos , Aminoácidos Esenciales , Cannabidiol/química , Cannabinoides/química , Cannabis/química , Dronabinol , Alimentos Funcionales , Fitoquímicos , Polifenoles
17.
Front Plant Sci ; 13: 913374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845700

RESUMEN

The development of effective tools for the sustainable supply of phyto-ingredients and natural substances with reduced environmental footprints can help mitigate the dramatic scenario of climate change. Plant cell cultures-based biorefineries can be a technological advancement to face this challenge and offer a potentially unlimited availability of natural substances, in a standardized composition and devoid of the seasonal variability of cultivated plants. Monounsaturated (MUFA) fatty acids are attracting considerable attention as supplements for biodegradable plastics, bio-additives for the cosmetic industry, and bio-lubricants. Cardoon (Cynara cardunculus L. var. altilis) callus cultures accumulate fatty acids and polyphenols and are therefore suitable for large-scale production of biochemicals and valuable compounds, as well as biofuel precursors. With the aim of boosting their potential uses, we designed a biotechnological approach to increase oleic acid content through Agrobacterium tumefaciens-mediated metabolic engineering. Bioinformatic data mining in the C. cardunculus transcriptome allowed the selection and molecular characterization of SAD (stearic acid desaturase) and FAD2.2 (fatty acid desaturase) genes, coding for key enzymes in oleic and linoleic acid formation, as targets for metabolic engineering. A total of 22 and 27 fast-growing independent CcSAD overexpressing (OE) and CcFAD2.2 RNAi knocked out (KO) transgenic lines were obtained. Further characterization of five independent transgenic lines for each construct demonstrated that, successfully, SAD overexpression increased linoleic acid content, e.g., to 42.5%, of the relative fatty acid content, in the CcSADOE6 line compared with 30.4% in the wild type (WT), whereas FAD2.2 silencing reduced linoleic acid in favor of the accumulation of its precursor, oleic acid, e.g., to almost 57% of the relative fatty acid content in the CcFAD2.2KO2 line with respect to 17.7% in the WT. Moreover, CcSADOE6 and CcFAD2.2KO2 were also characterized by a significant increase in total polyphenolic content up to about 4.7 and 4.1 mg/g DW as compared with 2.7 mg/g DW in the WT, mainly due to the accumulation of dicaffeoyl quinic and feruloyl quinic acids. These results pose the basis for the effective creation of an engineered cardoon cells-based biorefinery accumulating high levels of valuable compounds from primary and specialized metabolism to meet the industrial demand for renewable and sustainable sources of innovative bioproducts.

18.
Molecules ; 27(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35745082

RESUMEN

The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22's ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T.afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.


Asunto(s)
Micotoxinas , Ocratoxinas , Trichoderma , Aflatoxina B1 , Animales , Contaminación de Alimentos/análisis , Micotoxinas/análisis , Ocratoxinas/análisis , Peroxidasas , Trichoderma/metabolismo
19.
Nutrients ; 14(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35745239

RESUMEN

Gastroesophageal Reflux Disease (GERD) is multifactorial pathogenesis characterized by the abnormal reflux of stomach contents into the esophagus. Symptoms are worse after the ingestion of certain foods, such as coffee. Hence, a randomized pilot study conducted on 40 Italian subjects was assessed to verify the effect of standard (SC) and dewaxed coffee (DC) consumption on gastroesophageal reflux symptoms and quality of life in patients with gastrointestinal diseases. The assessment of patient diaries highlighted a significant percentage reduction of symptoms frequency when consuming DC and a significant increase in both heartburn-free and regurgitation-free days. Consequentially, patients had a significant increase of antacid-free days during the DC assumption. Moreover, the polyphenolic profile of coffee pods was ascertained through UHPLC-Q-Orbitrap HRMS analysis. Chlorogenic acids (CGAs) were the most abundant investigated compounds with a concentration level ranging between 7.316 (DC) and 6.721 mg/g (SC). Apart from CGAs, caffeine was quantified at a concentration level of 5.691 mg/g and 11.091 for DC and SC, respectively. While still preliminary, data obtained from the present pilot study provide promising evidence for the efficacy of DC consumption in patients with GERD. Therefore, this treatment might represent a feasible way to make coffee more digestible and better tolerated.


Asunto(s)
Café , Reflujo Gastroesofágico , Reflujo Gastroesofágico/diagnóstico , Humanos , Nucleotidiltransferasas , Proyectos Piloto , Calidad de Vida
20.
Ital J Pediatr ; 48(1): 80, 2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643585

RESUMEN

BACKGROUND: S100B is an established biomarker of brain development and damage. Lutein (LT) is a naturally occurring xanthophyll carotenoid mainly concentrated in the central nervous system (CNS), but its neurotrophic role is still debated. We investigated whether LT cord blood concentrations correlate with S100B in a cohort of preterm and term healthy newborns. METHODS: We conducted a prospective study on the distribution of LT and S100B in arterial cord blood of healthy preterm (n = 50) and term (n = 50) newborns. RESULTS: S100B and LT showed a pattern of concentration characterized by higher levels (P < 0.01, for all) at 33-36 weeks gestation (GA) followed by a progressive decrease (P < 0.01, for all) from 37 onwards with a dip at term. Both S100B and LT were gender-dependent with significantly (P < 0.01, for all) higher levels in females in preterm and term groups. S100B (R = 0.68; P < 0.001) and LT (R = 0.40; P = 0.005) correlated with GA at sampling. A positive significant correlation (R = 0.87; P < 0.001) between S100B and LT was found. CONCLUSIONS: The present data showing a correlation between S100B and LT supports the notion of a LT trophic role in the CNS. Further investigations in high-risk infants are needed to elucidate LT involvement in the pathophysiological cascade of events leading to CNS development and damage.


Asunto(s)
Sangre Fetal , Luteína , Calcio , Femenino , Sangre Fetal/metabolismo , Humanos , Recién Nacido , Luteína/análisis , Luteína/metabolismo , Factores de Crecimiento Nervioso/análisis , Factores de Crecimiento Nervioso/metabolismo , Estudios Prospectivos , Subunidad beta de la Proteína de Unión al Calcio S100/análisis , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...