Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Opin Genet Dev ; 85: 102159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382406

RESUMEN

Chromosome structure regulates DNA-templated processes such as transcription of genes. Dynamic changes to chromosome structure occur during development and in disease contexts. The cohesin complex is a molecular motor that regulates chromosome structure by generating DNA loops that bring two distal genomic sites into close spatial proximity. There are many open questions regarding the formation and dissolution of DNA loops, as well as the role(s) of DNA loops in regulating transcription of the interphase genome. This review focuses on recent discoveries that provide molecular insights into the role of cohesin and chromosome structure in gene transcription during development and disease.


Asunto(s)
Proteínas de Ciclo Celular , Cohesinas , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , ADN/genética , Estructuras Cromosómicas , Cromatina
2.
Sci Immunol ; 7(74): eabj9123, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930654

RESUMEN

Response rates to immunotherapy in solid tumors remain low due in part to the elevated prevalence of terminally exhausted T cells, a hypofunctional differentiation state induced through persistent antigen and stress signaling. However, the mechanisms promoting progression to terminal exhaustion in the tumor remain undefined. Using the low-input chromatin immunoprecipitation sequencing method CUT&RUN, we profiled the histone modification landscape of tumor-infiltrating CD8+ T cells throughout differentiation. We found that terminally exhausted T cells had unexpected chromatin features that limit their transcriptional potential. Terminally exhausted T cells had a substantial fraction of active chromatin, including active enhancers enriched for bZIP/AP-1 transcription factor motifs that lacked correlated gene expression, which was restored by immunotherapeutic costimulatory signaling. Reduced transcriptional potential was also driven by an increase in histone bivalency, which we linked directly to hypoxia exposure. Enforced expression of the hypoxia-insensitive histone demethylase Kdm6b was sufficient to overcome hypoxia, increase function, and promote antitumor immunity. Our study reveals the specific epigenetic changes mediated by histone modifications during T cell differentiation that support exhaustion in cancer, highlighting that their altered function is driven by improper costimulatory signals and environmental factors. These data suggest that even terminally exhausted T cells may remain competent for transcription in settings of increased costimulatory signaling and reduced hypoxia.


Asunto(s)
Cromatina , Neoplasias , Linfocitos T CD8-positivos , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Hipoxia/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Microambiente Tumoral
3.
Genetics ; 217(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33704438

RESUMEN

Cohesin is a ring-shaped protein complex that controls dynamic chromosome structure. Cohesin activity is important for a variety of biological processes, including formation of DNA loops that regulate gene expression. The precise mechanisms by which cohesin shapes local chromosome structure and gene expression are not fully understood. Recurrent mutations in cohesin complex members have been reported in various cancers, though it is not clear whether many cohesin sequence variants have phenotypes and contribute to disease. Here, we utilized CRISPR/Cas9 genome editing to introduce a variety of cohesin sequence variants into murine embryonic stem cells and investigate their molecular and cellular consequences. Some of the cohesin variants tested caused changes to transcription, including altered expression of gene encoding lineage-specifying developmental regulators. Altered gene expression was also observed at insulated neighborhoods, where cohesin-mediated DNA loops constrain potential interactions between genes and enhancers. Furthermore, some cohesin variants altered the proliferation rate and differentiation potential of murine embryonic stem cells. This study provides a functional comparison of cohesin variants found in cancer within an isogenic system, revealing the relative roles of various cohesin perturbations on gene expression and maintenance of cellular identity.


Asunto(s)
Proteínas de Ciclo Celular/genética , Diferenciación Celular , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proteínas Cromosómicas no Histona/metabolismo , Elementos de Facilitación Genéticos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Neoplasias/metabolismo , Cohesinas
4.
Nature ; 591(7851): 645-651, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33589820

RESUMEN

Regulatory T (Treg) cells, although vital for immune homeostasis, also represent a major barrier to anti-cancer immunity, as the tumour microenvironment (TME) promotes the recruitment, differentiation and activity of these cells1,2. Tumour cells show deregulated metabolism, leading to a metabolite-depleted, hypoxic and acidic TME3, which places infiltrating effector T cells in competition with the tumour for metabolites and impairs their function4-6. At the same time, Treg cells maintain a strong suppression of effector T cells within the TME7,8. As previous studies suggested that Treg cells possess a distinct metabolic profile from effector T cells9-11, we hypothesized that the altered metabolic landscape of the TME and increased activity of intratumoral Treg cells are linked. Here we show that Treg cells display broad heterogeneity in their metabolism of glucose within normal and transformed tissues, and can engage an alternative metabolic pathway to maintain suppressive function and proliferation. Glucose uptake correlates with poorer suppressive function and long-term instability, and high-glucose conditions impair the function and stability of Treg cells in vitro. Treg cells instead upregulate pathways involved in the metabolism of the glycolytic by-product lactic acid. Treg cells withstand high-lactate conditions, and treatment with lactate prevents the destabilizing effects of high-glucose conditions, generating intermediates necessary for proliferation. Deletion of MCT1-a lactate transporter-in Treg cells reveals that lactate uptake is dispensable for the function of peripheral Treg cells but required intratumorally, resulting in slowed tumour growth and an increased response to immunotherapy. Thus, Treg cells are metabolically flexible: they can use 'alternative' metabolites in the TME to maintain their suppressive identity. Further, our results suggest that tumours avoid destruction by not only depriving effector T cells of nutrients, but also metabolically supporting regulatory populations.


Asunto(s)
Ácido Láctico/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/inmunología , Linfocitos T Reguladores/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular , Femenino , Glucosa/metabolismo , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Factores Supresores Inmunológicos/inmunología , Factores Supresores Inmunológicos/metabolismo , Linfocitos T Reguladores/inmunología
5.
Nat Immunol ; 22(2): 205-215, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398183

RESUMEN

Cancer and chronic infections induce T cell exhaustion, a hypofunctional fate carrying distinct epigenetic, transcriptomic and metabolic characteristics. However, drivers of exhaustion remain poorly understood. As intratumoral exhausted T cells experience severe hypoxia, we hypothesized that metabolic stress alters their responses to other signals, specifically, persistent antigenic stimulation. In vitro, although CD8+ T cells experiencing continuous stimulation or hypoxia alone differentiated into functional effectors, the combination rapidly drove T cell dysfunction consistent with exhaustion. Continuous stimulation promoted Blimp-1-mediated repression of PGC-1α-dependent mitochondrial reprogramming, rendering cells poorly responsive to hypoxia. Loss of mitochondrial function generated intolerable levels of reactive oxygen species (ROS), sufficient to promote exhausted-like states, in part through phosphatase inhibition and the consequent activity of nuclear factor of activated T cells. Reducing T cell-intrinsic ROS and lowering tumor hypoxia limited T cell exhaustion, synergizing with immunotherapy. Thus, immunologic and metabolic signaling are intrinsically linked: through mitigation of metabolic stress, T cell differentiation can be altered to promote more functional cellular fates.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Metabolismo Energético , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/metabolismo , Mitocondrias/metabolismo , Microambiente Tumoral , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/inmunología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Hipoxia Tumoral
6.
Traffic ; 20(6): 448-459, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30989771

RESUMEN

Kidney proximal tubule (PT) cells have high-metabolic demands to drive the extraordinary ion and solute transport, water reabsorption, and endocytic uptake that occur in this nephron segment. Increases in renal blood flow alter glomerular filtration rate and lead to rapid mechanosensitive adaptations in PT transport, impacting metabolic demand. Although the PT reabsorbs essentially all of the filtered glucose, PT cells rely primarily on oxidative metabolism rather than glycolysis to meet their energy demands. We lack an understanding of how PT functions are impacted by changes in O2 availability via cortical capillaries and mechanosensitive signaling in response to alterations in luminal flow. Previously, we found that opossum kidney (OK) cells recapitulate key features of PT cells in vivo, including enhanced endocytic uptake and ion transport, when exposed to mechanical stimulation by culture on an orbital shaker. We hypothesized that increased oxygenation resulting from orbital shaking also contributes to this more physiologic phenotype. RNA seq of OK cells maintained under static conditions or exposed to orbital shaking for up to 96 hours showed significant time- and culture-dependent changes in gene expression. Transcriptional and metabolomics data were consistent with a decrease in glycolytic flux and with an increased utilization of aerobic metabolic pathways in cells exposed to orbital shaking. Moreover, we found spatial differences in the pattern of mitogenesis vs development of ion transport and endocytic capacities in our culture system that highlight the complexity of O2 -dependent and mechanosensitive crosstalk to regulate PT cell function.


Asunto(s)
Endocitosis , Células Epiteliales/metabolismo , Túbulos Renales Proximales/citología , Oxígeno/metabolismo , Estrés Mecánico , Transcriptoma , Animales , Técnicas de Cultivo de Célula/normas , Línea Celular , Glucólisis , Túbulos Renales Proximales/metabolismo , Metaboloma , Monodelphis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...