Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EBioMedicine ; 99: 104947, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38160529

RESUMEN

BACKGROUND: Human immune responses to COVID-19 vaccines display a large heterogeneity of induced immunity and the underlying immune mechanisms for this remain largely unknown. METHODS: Using a systems biology approach, we longitudinally profiled a unique cohort of female high and low responders to the BNT162b vaccine, who were known from previous COVID-19 vaccinations to develop maximum and minimum immune responses to the vaccine. We utilized high dimensional flow cytometry, bulk and single cell mRNA sequencing and 48-plex serum cytokine analyses. FINDINGS: We revealed early, transient immunological and molecular signatures that distinguished high from low responders and correlated with B and T cell responses measured 14 days later. High responders featured a distinct transcriptional activity of interferon-driven genes and genes connected to enhanced antigen presentation. This was accompanied by a robust cytokine response related to Th1 differentiation. Both transcriptome and serum cytokine signatures were confirmed in two independent confirmatory cohorts. INTERPRETATION: Collectively, our data contribute to a better understanding of the immunogenicity of mRNA-based COVID-19 vaccines, which might lead to the optimization of vaccine designs for individuals with poor vaccine responses. FUNDING: German Center for Infection Research, German Center for Lung Research, German Research Foundation, Excellence Strategy EXC 2155 "RESIST" and European Regional Development Fund.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Femenino , COVID-19/prevención & control , Citocinas/genética , Vacunación , Biología de Sistemas/métodos , ARN Mensajero , Anticuerpos Antivirales
2.
Cell Rep ; 42(6): 112597, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37289588

RESUMEN

Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/ß-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Ratones , Animales , Antígenos de Histocompatibilidad Clase I , Macrófagos , Glándulas Salivales , Ratones Endogámicos BALB C
3.
Front Immunol ; 14: 1166589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215123

RESUMEN

Since early 2022, various Omicron variants have dominated the SARS-CoV-2 pandemic in most countries. All Omicron variants are B-cell immune escape variants, and antibodies induced by first-generation COVID-19 vaccines or by infection with earlier SARS-CoV-2 variants largely fail to protect individuals from Omicron infection. In the present study, we investigated the effect of Omicron infections in triple-vaccinated and in antigen-naive individuals. We show that Omicron breakthrough infections occurring 2-3.5 months after the third vaccination restore B-cell and T-cell immune responses to levels similar to or higher than those measured 14 days after the third vaccination, including the induction of Omicron-neutralizing antibodies. Antibody responses in breakthrough infection derived mostly from cross-reacting B cells, initially induced by vaccination, whereas Omicron infections in antigen-naive individuals primarily generated B cells binding to the Omicron but not the Wuhan spike protein. Although antigen-naive individuals mounted considerable T-cell responses after infection, B-cell responses were low, and neutralizing antibodies were frequently below the limit of detection. In summary, the detection of Omicron-associated B-cell responses in primed and in antigen-naive individuals supports the application of Omicron-adapted COVID-19 vaccines, but calls into question their suitability if they also contain/encode antigens of the original Wuhan virus.


Asunto(s)
COVID-19 , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Infección Irruptiva
4.
Nat Commun ; 13(1): 4872, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982040

RESUMEN

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Asunto(s)
COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
5.
Front Immunol ; 13: 863039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359969

RESUMEN

Evaluating long-term protection against SARS-CoV-2 variants of concern in convalescing individuals is of high clinical relevance. In this prospective study of a cohort of 46 SARS-CoV-2 patients infected with the Wuhan strain of SARS-CoV-2 we longitudinally analyzed changes in humoral and cellular immunity upon early and late convalescence. Antibody neutralization capacity was measured by surrogate virus neutralization test and cellular responses were investigated with 31-colour spectral flow cytometry. Spike-specific, isotype-switched B cells developed already during the disease phase, showed a memory phenotype and did not decrease in numbers even during late convalescence. Otherwise, no long-lasting perturbations of the immune compartment following COVID-19 clearance were observed. During convalescence anti-Spike (S1) IgG antibodies strongly decreased in all patients. We detected neutralizing antibodies against the Wuhan strain as well as the Alpha and Delta but not against the Beta, Gamma or Omicron variants for up to 7 months post COVID-19. Furthermore, correlation analysis revealed a strong association between sera anti-S1 IgG titers and their neutralization capacity against the Wuhan strain as well as Alpha and Delta. Overall, our data suggest that even 7 month after the clearance of COVID-19 many patients possess a protective layer of immunity, indicated by the persistence of Spike-specific memory B cells and by the presence of neutralizing antibodies against the Alpha and Delta variants. However, lack of neutralizing antibodies against the Beta, Gamma and Omicron variants even during the peak response is of major concern as this indicates viral evasion of the humoral immune response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Convalecencia , Humanos , Inmunidad Humoral , Inmunoglobulina G , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/genética
6.
Eur J Immunol ; 52(2): 356-359, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34870322

RESUMEN

Sera of vaccines were assessed by surrogate virus neutralization tests for their capacity to neutralize the SARS-CoV-2 Delta variant. Homologous prime-boost immunization with Moderna's Spikevax as well as heterologous immunization with AstraZeneca's Vaxzevria followed by Moderna's Spikevax were identified as highly potent vaccination regimens for the induction of Delta-neutralizing antibodies.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , COVID-19/sangre , SARS-CoV-2/metabolismo , Vacunación , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Femenino , Humanos , Masculino , SARS-CoV-2/inmunología
7.
Front Immunol ; 12: 772240, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858430

RESUMEN

Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.


Asunto(s)
Anticuerpos Antivirales/sangre , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Administración Intranasal , Animales , Anticuerpos Neutralizantes/sangre , Línea Celular , Chlorocebus aethiops , Cricetinae , Vectores Genéticos , Inmunización Secundaria , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Pulmón/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células TH1/inmunología , Vacunación , Vacunas de Subunidad/inmunología , Virus Vaccinia/inmunología , Células Vero , Carga Viral/inmunología
8.
Front Immunol ; 12: 721738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456929

RESUMEN

Here, we described the case of a B cell-deficient patient after CD19 CAR-T cell therapy for refractory B cell Non-Hodgkin Lymphoma with protracted coronavirus disease 2019 (COVID-19). For weeks, this patient only inefficiently contained the virus while convalescent plasma transfusion correlated with virus clearance. Interestingly, following convalescent plasma therapy natural killer cells matured and virus-specific T cells expanded, presumably allowing virus clearance and recovery from the disease. Our findings, thus, suggest that convalescent plasma therapy can activate cellular immune responses to clear SARS-CoV-2 infections. If confirmed in larger clinical studies, these data could be of general importance for the treatment of COVID-19 patients.


Asunto(s)
Linfocitos B , COVID-19/inmunología , COVID-19/terapia , Síndromes de Inmunodeficiencia/inmunología , Inmunoterapia Adoptiva , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Linfocitos B/inmunología , COVID-19/complicaciones , Femenino , Humanos , Inmunización Pasiva , Inmunoglobulinas Intravenosas , Síndromes de Inmunodeficiencia/complicaciones , Activación de Linfocitos , Linfopoyesis , SARS-CoV-2 , Carga Viral , Sueroterapia para COVID-19
9.
Nat Med ; 27(9): 1525-1529, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34262158

RESUMEN

Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School's COVID-19 Contact Study cohort of healthcare professionals to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer's BNT162b2 (n = 55). Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/inmunología , SARS-CoV-2/inmunología , Vacuna BNT162 , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , ChAdOx1 nCoV-19 , Humanos , Inmunización Secundaria/métodos , Inmunogenicidad Vacunal/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
10.
Cell Mol Immunol ; 18(4): 936-944, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33139905

RESUMEN

Neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into cells via surface-expressed angiotensin-converting enzyme 2 (ACE2). We used a surrogate virus neutralization test (sVNT) and SARS-CoV-2 S protein-pseudotyped vesicular stomatitis virus (VSV) vector-based neutralization assay (pVNT) to assess the degree to which serum antibodies from coronavirus disease 2019 (COVID-19) convalescent patients interfere with the binding of SARS-CoV-2 S to ACE2. Both tests revealed neutralizing anti-SARS-CoV-2 S antibodies in the sera of ~90% of mildly and 100% of severely affected COVID-19 convalescent patients. Importantly, sVNT and pVNT results correlated strongly with each other and to the levels of anti-SARS-CoV-2 S1 IgG and IgA antibodies. Moreover, levels of neutralizing antibodies correlated with the duration and severity of clinical symptoms but not with patient age. Compared to pVNT, sVNT is less sophisticated and does not require any biosafety labs. Since this assay is also much faster and cheaper, sVNT will not only be important for evaluating the prevalence of neutralizing antibodies in a population but also for identifying promising plasma donors for successful passive antibody therapy.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/sangre , Línea Celular , Convalecencia , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Pruebas de Neutralización/métodos
11.
PLoS Pathog ; 14(8): e1007252, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30153311

RESUMEN

Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many characteristics. Therefore infection of mice with MCMV is an important tool to understand immune responses and to design vaccines and therapies for patients at the risk of severe CMV disease. In this study, we investigated the immune response in the lungs following acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells. We found that the formation of NIFs was essential to reduce the number of infected cells in the lung tissue, showing that NIFs were sites of infection as well as sites of immune response. Comparing mice deficient for several leukocyte subsets, we identified T cells to be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to efficiently control virus spread. Additionally, we investigated the effects of perforin and interferon-gamma (IFNγ) on the virus infection and found important roles for both mechanisms. NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells. Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-dependent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs for early containment of a local MCMV infection at the single cell level.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Infecciones por Herpesviridae/inmunología , Interferón gamma/metabolismo , Muromegalovirus/inmunología , Neumonía/virología , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas de Unión al ADN/genética , Infecciones por Herpesviridae/complicaciones , Infecciones por Herpesviridae/patología , Inmunidad Celular/fisiología , Interferón gamma/genética , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neumonía/inmunología , Neumonía/patología
12.
FEBS Lett ; 592(6): 1020-1029, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29427517

RESUMEN

Curli are functional amyloids that form a major part of the biofilm produced by many enterobacteriaceae. A multiprotein system around the outer membrane protein CsgG is in charge of the export and controlled propagation of the main Curli subunits, CsgA and CsgB. CsgF is essential for the linkage of the main amyloid-forming proteins to the cell surface. Here, we present a profound biochemical and biophysical characterization of recombinant CsgF, highlighted by a solution NMR structure of CsgF in the presence of dihexanoylphosphocholine micelles. Interestingly, CsgF contains large unstructured domains and does not show a globular fold. The data presented shed new light on the molecular mechanism of Curli amyloid surface attachment.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Pliegue de Proteína , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Methods Mol Biol ; 1495: 147-160, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27714615

RESUMEN

Solid-state NMR spectroscopy (ssNMR) is uniquely suited for atomic-resolution structural investigations of large protein assemblies, which are notoriously difficult to study due to their insoluble and non-crystalline nature. However, assignment ambiguities because of limited resolution and spectral crowding are currently major hurdles that quickly increase with the length of the polypeptide chain. The line widths of ssNMR signals are independent of proteins size, making segmental isotope labeling a powerful approach to overcome this limitation. It allows a scalable reduction of signal overlap, aids the assignment of repetitive amino acid sequences, and can be easily combined with other selective isotope labeling strategies. Here we present a detailed protocol for segmental isotope labeling of insoluble proteins using protein trans-splicing. Our protocol exploits the ability of many insoluble proteins, such as amyloid fibrils, to fold correctly under in vitro conditions. In combination with the robust trans-splicing efficiency of the intein DnaE from Nostoc punctiforme, this allows for high yields of segmentally labeled protein required for ssNMR analysis.


Asunto(s)
Inteínas , Marcaje Isotópico/métodos , Empalme de Proteína , Proteínas Recombinantes de Fusión/química , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes de Fusión/biosíntesis , Solubilidad
14.
Chembiochem ; 17(14): 1308-11, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147408

RESUMEN

Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT.


Asunto(s)
Amiloide/química , Óxidos N-Cíclicos/química , Espectroscopía de Resonancia Magnética/métodos , Propanoles/química , Animales , Sitios de Unión , Humanos , Estructura Molecular , Propiedades de Superficie
15.
Proc Natl Acad Sci U S A ; 113(3): E272-81, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26733681

RESUMEN

The controlled formation of filamentous protein complexes plays a crucial role in many biological systems and represents an emerging paradigm in signal transduction. The mitochondrial antiviral signaling protein (MAVS) is a central signal transduction hub in innate immunity that is activated by a receptor-induced conversion into helical superstructures (filaments) assembled from its globular caspase activation and recruitment domain. Solid-state NMR (ssNMR) spectroscopy has become one of the most powerful techniques for atomic resolution structures of protein fibrils. However, for helical filaments, the determination of the correct symmetry parameters has remained a significant hurdle for any structural technique and could thus far not be precisely derived from ssNMR data. Here, we solved the atomic resolution structure of helical MAVS(CARD) filaments exclusively from ssNMR data. We present a generally applicable approach that systematically explores the helical symmetry space by efficient modeling of the helical structure restrained by interprotomer ssNMR distance restraints. Together with classical automated NMR structure calculation, this allowed us to faithfully determine the symmetry that defines the entire assembly. To validate our structure, we probed the protomer arrangement by solvent paramagnetic resonance enhancement, analysis of chemical shift differences relative to the solution NMR structure of the monomer, and mutagenesis. We provide detailed information on the atomic contacts that determine filament stability and describe mechanistic details on the formation of signaling-competent MAVS filaments from inactive monomers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Espectroscopía de Resonancia Magnética , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Reproducibilidad de los Resultados , Solventes
16.
Angew Chem Int Ed Engl ; 54(49): 14669-72, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26474178

RESUMEN

Curli are functional bacterial amyloids produced by an intricate biogenesis machinery. Insights into their folding and regulation can advance our understanding of amyloidogenesis. However, gaining detailed structural information of amyloids, and their tendency for structural polymorphisms, remains challenging. Herein we compare high-quality solid-state NMR spectra from biofilm-derived and recombinantly produced curli and provide evidence that they adopt a similar, well-defined ß-solenoid arrangement. Curli subunits consist of five sequence repeats, resulting in severe spectral overlap. Using segmental isotope labeling, we obtained the unambiguous sequence-specific resonance assignments and secondary structure of one repeat, and demonstrate that all repeats are most likely structurally equivalent.


Asunto(s)
Amiloide/química , Biopelículas , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética
17.
Proc Natl Acad Sci U S A ; 112(21): 6694-9, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947153

RESUMEN

Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Šresolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Šresolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.


Asunto(s)
Antígenos Virales/química , Herpesvirus Humano 8/química , Proteínas Nucleares/química , Secuencia de Aminoácidos , Antígenos Virales/genética , Antígenos Virales/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , ADN Viral/genética , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Electricidad Estática , Difracción de Rayos X
18.
Sci Signal ; 8(372): ra36, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25872871

RESUMEN

Most bacteria can form multicellular communities called biofilms on biotic and abiotic surfaces. This multicellular response to surface contact correlates with an increased resistance to various adverse environmental conditions, including those encountered during infections of the human host and exposure to antimicrobial compounds. Biofilm formation occurs when freely swimming (planktonic) cells encounter a surface, which stimulates the chemosensory-like, surface-sensing system Wsp and leads to generation of the intracellular second messenger 3',5'-cyclic-di-guanosine monophosphate (c-di-GMP). We identified adaptive mutations in a clinical small colony variant (SCV) of Pseudomonas aeruginosa and correlated their presence with self-aggregating growth behavior and an enhanced capacity to form biofilms. We present evidence that a point mutation in the 5' untranslated region of the accBC gene cluster, which encodes components of an enzyme responsible for fatty acid biosynthesis, was responsible for a stabilized mRNA structure that resulted in reduced translational efficiency and an increase in the proportion of short-chain fatty acids in the plasma membrane. We propose a model in which these changes in P. aeruginosa serve as a signal for the Wsp system to constitutively produce increased amounts of c-di-GMP and thus play a role in the regulation of adhesion-stimulated bacterial responses.


Asunto(s)
Membrana Celular/metabolismo , GMP Cíclico/análogos & derivados , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Regiones no Traducidas 5'/genética , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Biopelículas , GMP Cíclico/biosíntesis , Citosol/efectos de los fármacos , Citosol/metabolismo , Ácidos Grasos/metabolismo , Familia de Multigenes/genética , Conformación de Ácido Nucleico , Fenotipo , Biosíntesis de Proteínas/genética , Pseudomonas aeruginosa/fisiología , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Cloruro de Sodio/farmacología
19.
Biomol NMR Assign ; 9(2): 223-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25301530

RESUMEN

The mitochondrial antiviral signalling protein (MAVS) is a central signal transduction hub in the innate immune response against viral infections. Viral RNA present in the cytoplasm is detected by retinoic acid inducible gene I like receptors, which then activate MAVS via heterotypic interactions between their respective caspase activation and recruitment domains (CARD). This leads to the formation of active, high molecular weight MAVS complexes formed by homotypic interactions between the single N-terminal CARDs of MAVS. Filaments formed by the N-terminal MAVS(CARD) alone are sufficient to induce the autocatalytic conversion from a monomeric to an aggregated state in a prion-like manner. Here, we present the nearly complete spectroscopic (13)C and (15)N resonance assignments of human MAVS(CARD) filaments obtained from a single sample by magic angle spinning solid-state NMR spectroscopy. The corresponding secondary chemical shifts suggest that the filamentous form of MAVS(CARD) retains an exclusively alpha-helical fold that is very similar to the X-ray structure determined previously from monomeric MAVS(CARD)-maltose binding protein fusion constructs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Inmunidad Innata , Resonancia Magnética Nuclear Biomolecular , Transducción de Señal , Secuencia de Aminoácidos , Humanos , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
20.
Chembiochem ; 16(1): 51-4, 2015 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-25394265

RESUMEN

We present an efficient method for the reduction of spectral complexity in the solid-state NMR spectra of insoluble protein assemblies, without loss of signal intensity. The approach is based on segmental isotope labeling by using the split intein DnaE from Nostoc punctiforme. We show that the segmentally (13)C, (15)N-labeled prion domain of HET-s exhibits significantly reduced spectral overlap while retaining the wild-type structure and spectral quality. A large number of unambiguous distance restraints were thus collected from a single two-dimensional (13)C, (13)C cross-correlation spectrum. The observed resonances could be unambiguously identified as intramolecular without the need for preparing a dilute, less sensitive sample.


Asunto(s)
Proteínas Bacterianas/química , ADN Polimerasa III/química , Inteínas/genética , Nostoc/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Isótopos de Carbono , ADN Polimerasa III/genética , Expresión Génica , Marcaje Isotópico , Modelos Moleculares , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Nostoc/genética , Resonancia Magnética Nuclear Biomolecular/métodos , Agregado de Proteínas , Conformación Proteica , Empalme de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...