Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 118(40): 9411-8, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25223627

RESUMEN

We present an Fe Kα resonant inelastic X-ray scattering (RIXS) and X-ray emission (XES) study of ferrous and ferric hexacyanide dissolved in water and ethylene glycol. We observe that transitions below the absorption edge show that the solvent has a distinct effect on the valence electronic structure. In addition, both the RIXS and XES spectra show a stabilization of the 2p levels when dissolved in water. Using molecular dynamics simulations, we propose that this effect arises from the hydrogen-bonding interactions between the complex and nearby solvent molecules. This withdraws electron density from the ligands, stabilizing the complex but also causing a slight increase in π-backbonding.

2.
Struct Dyn ; 1(2): 024901, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26798775

RESUMEN

We present a picosecond Fe K-edge absorption study of photoexcited ferrous and ferric hexacyanide in water under 355 and 266 nm excitation. Following 355 nm excitation, the transient spectra for the ferrous and ferric complexes exhibit a red shift of the edge reflecting an increased electron density at the Fe atom. For the former, an enhanced pre-edge transition is also observed. These observations are attributed to the aquated [Fe(CN)5OH2](3-) species, based on quantum chemical calculations which also provide structural parameters. Upon 266 nm excitation of the ferric complex, a transient reminiscent of the aquated species is observed (appearance of a pre-edge feature and red shift of the edge) but it is different from that obtained under 355 nm excitation. This points to a new reaction channel occurring through an intermediate state lying between these two excitation energies. Finally, 266 nm excitation of the ferrous species is dominated by the photooxidation channel with formation of the ferric complex as main photoproduct. However, we observe an additional minor photoproduct, which is identical to the 266 nm generated photoproduct of the ferric species, suggesting that under our experimental conditions, the pump pulse photooxidises the ferrous complex and re-excites the primary ferric photoproduct.

3.
J Phys Chem A ; 117(22): 4591-601, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23617226

RESUMEN

We present a static and picosecond X-ray absorption study at the Cu K-edge of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) ([Cu(dmp)2](+); dmp = 2,9-dimethyl-1,10-phenanthroline) dissolved in acetonitrile and dichloromethane. The steady-state photoluminescence spectra in dichloromethane and acetonitrile are also presented and show a shift to longer wavelengths for the latter, which points to a stronger stabilization of the excited complex. The fine structure features of the static and transient X-ray spectra allow an unambiguous assignment of the electronic and geometric structure of the molecule in both its ground and excited (3)MLCT states. Importantly, the transient spectra are remarkably similar for both solvents, and the spectral changes can be rationalized using the optimized ground- and excited-state structures of the complex. The proposed assignment of the lifetime shortening of the excited state in donor solvents (acetonitrile) to a metal-centered exciplex is not corroborated here. Molecular dynamics simulations confirm the lack of complexation; however, in both solvents the molecules come close to the metal but undergo rapid exchange with the bulk. The shortening of the lifetime of the title complex and nine additional related complexes can be rationalized by the decrease in the (3)MLCT energy. Deviations from this trend may be explained by means of the effects of the dihedral angle between the ligand planes, the solvent, and the (3)MLCT-(1)MLCT energy gap.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA