Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Sci ; 198(1): 128-140, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38070162

RESUMEN

Evaluating the neurodevelopmental effects of thyroid-disrupting chemicals is challenging. Although some standardized developmental and reproductive toxicity studies recommend serum thyroxine (T4) measures in developing rats, extrapolating between a serum T4 reduction and neurodevelopmental outcomes is not straightforward. Previously, we showed that the blood-brain and blood-cerebrospinal fluid barriers may be affected by developmental hypothyroidism in newborn rats. Here, we hypothesized that if the brain barriers were functionally disturbed by abnormal thyroid action, then small molecules may escape from the brain tissue and into general circulation. These small molecules could then be identified in blood samples, serving as a direct readout of thyroid-mediated developmental neurotoxicity. To address these hypotheses, pregnant rats were exposed to propylthiouracil (PTU, 0 or 3 ppm) to induce thyroid hormone insufficiency, and dams were permitted to give birth. PTU significantly reduced serum T4 in postnatal offspring. Consistent with our hypothesis, we show that tight junctions of the brain barriers were abnormal in PTU-exposed pups, and the blood-brain barrier exhibited increased permeability. Next, we performed serum microRNA Sequencing (miRNA-Seq) to identify noncoding RNAs that may reflect these neurodevelopmental disturbances. Of the differentially expressed miRNAs identified, 7 were upregulated in PTU-exposed pups. Validation by qRT-PCR shows that miR-495 and miR-543-3p were similarly upregulated in males and females. Interestingly, these miRNAs have been linked to cell junction dysfunction in other models, paralleling the identified abnormalities in the rat brain. Taken together, these data show that miR-495 and miR-543-3p may be novel in vivo biomarkers of thyroid-mediated developmental neurotoxicity.


Asunto(s)
Hipotiroidismo , MicroARNs , Síndromes de Neurotoxicidad , Animales , Femenino , Masculino , Embarazo , Ratas , Encéfalo , Hipotiroidismo/inducido químicamente , MicroARNs/genética , Síndromes de Neurotoxicidad/etiología , Hormonas Tiroideas , Tiroxina , Regulación hacia Arriba
2.
Toxicol Sci ; 198(1): 113-127, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38145495

RESUMEN

The environmental contaminant perchlorate impairs the synthesis of thyroid hormones by reducing iodine uptake into the thyroid gland. Despite this known action, moderate doses of perchlorate do not significantly alter serum thyroid hormone in rat pups born to exposed dams. We examined perchlorate dosimetry and responsivity of the thyroid gland and brain in offspring following maternal exposure to perchlorate. Pregnant rat dams were delivered perchlorate in drinking water (0, 30, 100, 300, 1000 ppm) from gestational day 6 to postnatal day (PN) 21. Perchlorate was present in the placenta, milk, and serum, the latter declining in pups over the course of lactation. Serum and brain thyroid hormone were reduced in pups at birth but recovered to control levels by PN2. Dramatic upregulation of Nis was observed in the thyroid gland of the exposed pup. Despite the return of serum thyroid hormone to control levels by PN2, expression of several TH-responsive genes was altered in the PN14 pup brain. Contextual fear learning was unimpaired in the adults, supporting previous reports. Declining levels of serum perchlorate and a profound upregulation of Nis gene expression in the thyroid gland are consistent with the rapid return to the euthyroid state in the neonate. However, despite this recovery, thyroid hormone insufficiencies in serum and brain beginning in utero and present at birth appear sufficient to alter TH action in the fetus and subsequent trajectory of brain development. Biomarkers of that altered trajectory remain in the brain of the neonate, demonstrating that perchlorate is not devoid of effects on the developing brain.


Asunto(s)
Compuestos de Amonio Cuaternario , Resiliencia Psicológica , Glándula Tiroides , Embarazo , Femenino , Ratas , Animales , Percloratos/toxicidad , Percloratos/metabolismo , Animales Recién Nacidos , Hormonas Tiroideas
3.
Toxicol Sci ; 193(2): 192-203, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37099719

RESUMEN

A number of xenobiotics interfere with thyroid hormone (TH) signaling. Although adequate supplies of TH are necessary for normal brain development, regulatory reliance on serum TH as proxies for brain TH insufficiency is fraught with significant uncertainties. A more direct causal linkage to neurodevelopmental toxicity induced by TH-system disrupting chemicals is to measure TH in the target organ of most concern, the brain. However, the phospholipid-rich matrix of brain tissue presents challenges for TH extraction and measurement. We report optimized analytical procedures to extract TH in brain tissue of rats with recoveries >80% and low detection limits for T3, rT3, and T4 (0.013, 0.033, and 0.028 ng/g, respectively). Recovery of TH is augmented by enhancing phospholipid separation from TH using an anion exchange column coupled with a stringent column wash. Quality control measures incorporating a matrix-matched calibration procedure revealed excellent recovery and consistency across a large number of samples. Application of optimized procedures revealed age-dependent increases in neonatal brain T4, T3, and rT3 on the day of birth (postnatal day, PN0), PN2, PN6, and PN14. No sex-dependent differences in brain TH were observed at these ages, and similar TH levels were evident in perfused versus non-perfused brains. Implementation of a robust and reliable method to quantify TH in the fetal and neonatal rat brain will aid in the characterization of the thyroid-dependent chemical interference on neurodevelopment. A brain- in addition to a serum-based metric will reduce uncertainties in assessment of hazard and risk on the developing brain posed by thyroid system-disrupting chemicals.


Asunto(s)
Rutas de Resultados Adversos , Ratas , Animales , Animales Recién Nacidos , Hormonas Tiroideas , Glándula Tiroides/metabolismo , Encéfalo/metabolismo , Tiroxina
4.
Front Endocrinol (Lausanne) ; 14: 1090081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36843608

RESUMEN

Thyroid hormone (TH) action controls brain development in a spatiotemporal manner. Previously, we demonstrated that perinatal hypothyroidism led to formation of a periventricular heterotopia in developing rats. This heterotopia occurs in the posterior telencephalon, and its formation was preceded by loss of radial glia cell polarity. As radial glia mediate cell migration and originate in a progenitor cell niche called the ventricular zone (VZ), we hypothesized that TH action may control cell signaling in this region. Here we addressed this hypothesis by employing laser capture microdissection and RNA-Seq to evaluate the VZ during a known period of TH sensitivity. Pregnant rats were exposed to a low dose of propylthiouracil (PTU, 0.0003%) through the drinking water during pregnancy and lactation. Dam and pup THs were quantified postnatally and RNA-Seq of the VZ performed in neonates. The PTU exposure resulted in a modest increase in maternal thyroid stimulating hormone and reduced thyroxine (T4). Exposed neonates exhibited hypothyroidism and T4 and triiodothyronine (T3) were also reduced in the telencephalon. RNA-Seq identified 358 differentially expressed genes in microdissected VZ cells of hypothyroid neonates as compared to controls (q-values ≤0.05). Pathway analyses showed processes like maintenance of the extracellular matrix and cytoskeleton, cell adhesion, and cell migration were significantly affected by hypothyroidism. Immunofluorescence also demonstrated that collagen IV, F-actin, radial glia, and adhesion proteins were reduced in the VZ. Immunohistochemistry of integrin αvß3 and isoforms of both thyroid receptors (TRα/TRß) showed highly overlapping expression patterns, including enrichment in the VZ. Taken together, our results show that TH action targets multiple components of cell junctions in the VZ, and this may be mediated by both genomic and nongenomic mechanisms. Surprisingly, this work also suggests that the blood-brain and blood-cerebrospinal fluid barriers may also be affected in hypothyroid newborns.


Asunto(s)
Hipotiroidismo , Tiroxina , Embarazo , Femenino , Ratas , Animales , Animales Recién Nacidos , Tiroxina/metabolismo , Antitiroideos , Hormonas Tiroideas/metabolismo , Hipotiroidismo/metabolismo , Encéfalo/metabolismo , Uniones Intercelulares/metabolismo
6.
Toxicol Sci ; 183(1): 195-213, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34460931

RESUMEN

Many xenobiotics are identified as potential thyroid disruptors due to their action to reduce circulating levels of thyroid hormone, most notably thyroxine (T4). Developmental neurotoxicity is a primary concern for thyroid disrupting chemicals yet correlating the impact of chemically induced changes in serum T4 to perturbed brain development remains elusive. A number of thyroid-specific neurodevelopmental assays have been proposed, based largely on the model thyroid hormone synthesis inhibitor propylthiouracil (PTU). This study examined whether thyroid disrupting chemicals acting distinct from synthesis inhibition would result in the same alterations in brain as expected with PTU. The perfluoroalkyl substance perfluorohexane sulfonate (50 mg/kg/day) and the antimicrobial Triclosan (300 mg/kg/day) were administered to pregnant rats from gestational day 6 to postnatal day (PN) 21, and a number of PTU-defined assays for neurotoxicity evaluated. Both chemicals reduced serum T4 but did not increase thyroid stimulating hormone. Both chemicals increased expression of hepatic metabolism genes, while thyroid hormone-responsive genes in the liver, thyroid gland, and brain were largely unchanged. Brain tissue T4 was reduced in newborns, but despite persistent T4 reductions in serum, had recovered in the PN6 pup brain. Neither treatment resulted in a low dose PTU-like phenotype in either brain morphology or neurobehavior, raising questions for the interpretation of serum biomarkers in regulatory toxicology. They further suggest that reliance on serum hormones as prescriptive of specific neurodevelopmental outcomes may be too simplistic and to understand thyroid-mediated neurotoxicity we must expand our thinking beyond that which follows thyroid hormone synthesis inhibition.


Asunto(s)
Fluorocarburos , Triclosán , Animales , Femenino , Fluorocarburos/toxicidad , Embarazo , Propiltiouracilo/toxicidad , Ratas , Glándula Tiroides , Tiroxina , Triclosán/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...