Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(9): e202202361, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36330884

RESUMEN

A pyrazole-based ligand substituted with terpyridine groups at the 3 and 5 positions has been synthesized to form the dinuclear cobalt complex 1, that electrocatalytically reduces carbon dioxide (CO2 ) to carbon monoxide (CO) in the presence of Brønsted acids in DMF. Chemical, electrochemical and UV-vis spectro-electrochemical studies under inert atmosphere indicate pairwise reduction processes of complex 1. Infrared spectro-electrochemical studies under CO2 and CO atmosphere are consistent with a reduced CO-containing dicobalt complex which results from the electroreduction of CO2 . In the presence of trifluoroethanol (TFE), electrocatalytic studies revealed single-site mechanism with up to 94 % selectivity towards CO formation when 1.47 M TFE were present, at -1.35 V vs. Saturated Calomel Electrode in DMF (0.39 V overpotential). The low faradaic efficiencies obtained (<50 %) are attributed to the generation of CO-containing species formed during the electrocatalytic process, which inhibit the reduction of CO2 .

2.
Chem Commun (Camb) ; 57(79): 10206-10209, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34523650

RESUMEN

The presence of Pd⋯Cu and Pd⋯Pd interactions as well as the order of metal atoms in a chain held by a modular polynucleating ligand is controlled by the coordinating ability of the anions, leading to selective formation of bi- and tetranuclear Pd/Cu and Pd4 chains. Metal-metal cooperative reactivity in these complexes was tested in Ar-O bond formation and alkyne activation.

3.
Dalton Trans ; 49(36): 12756-12766, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32959855

RESUMEN

We report the synthesis and reactivity of RuII complexes with a new naphthyridinone-substituted phosphine ligand, 7-(diisopropylphosphinomethyl)-1,8-naphthyridin-2(1H)-one (L-H), which contains two reactive sites that can potentially be deprotonated by a strong base: an NH proton of naphthyridinone and a methylene arm attached to the phosphine. In the absence of a base, the stable bis-ligated complex Ru(L-H)2Cl2 (1) containing two NH groups in the secondary coordination sphere is formed. Upon further reaction with a base, a doubly deprotonated, dimeric complex is obtained, [Ru2(L*-H)2(L)2] (2), in which two of the four ligands undergo deprotonation at the NH (L), while the other two ligands are deprotonated at the methylene groups (L*-H) as confirmed by an X-ray diffraction study; intramolecular hydrogen bonding is present between the NH group of one ligand and an O-atom of another ligand in the dimeric structure, which stabilizes the observed geometry of the complex. Complex 2 reacts with protic solvents such as water or methanol generating aqua Ru(L)2(OH2)2 (3) or methanol complexes Ru(L)2(MeOH)2 (4), respectively, both exhibiting intramolecular H-bonded patterns with surrounding ligands at least in the solid state. These complexes react with benzyl alcohols to give aldehydes via base-free acceptorless dehydrogenation.

4.
Dalton Trans ; 49(46): 16623-16626, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-32725016

RESUMEN

In this work we provide direct experimental evidence on the correlation of remote interactions between a newly synthesized MnI-complex (1) and different alkali cations with redox potential tuning. Furthermore we report the electrochemical behavior of 1 towards carbon dioxide, including the effects of added alkali salts using cyclic voltammetry.

5.
Chemistry ; 26(53): 12168-12179, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32427376

RESUMEN

Cooperation between two different metals plays a crucial role in many synergistic catalytic reactions, such as the Sonogashira C-C cross-coupling reaction, where an interaction between the Pd and Cu centers is proposed in the transmetalation step. Although several heterobimetallic Pd/Cu complexes were proposed as structural models of the active species in Sonogashira coupling, the detailed understanding of the metal-metal cooperation in transmetalation is still lacking in current systems. In this work, we report a stepwise and systematic approach to building heteromultimetallic Pd/Cu assemblies as a tool to study metal-metal cooperativity. We obtained fully characterized Pd/Cu multimetallic assemblies that show reactivity in alkyne activation, formation of catalytically relevant aryl/acetylide species, and C-C elimination, serving as functional models for Sonogashira reaction intermediates. The combined experimental and DFT studies highlight the importance of ligand-controlled coordination geometry, metal-metal distances and dynamics of the multimetallic assembly for transmetalation step.

6.
Chem Sci ; 11(21): 5494-5502, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34094076

RESUMEN

We report the selective formation of heterobimetallic PtII/CuI complexes that demonstrate how facile bond activation processes can be achieved by altering the reactivity of common organoplatinum compounds through their interaction with another metal center. The interaction of the Cu center with the Pt center and with a Pt-bound alkyl group increases the stability of PtMe2 towards undesired rollover cyclometalation. The presence of the CuI center also enables facile transmetalation from an electron-deficient tetraarylborate [B(ArF)4]- anion and mild C-H bond cleavage of a terminal alkyne, which was not observed in the absence of an electrophilic Cu center. The DFT study indicates that the Cu center acts as a binding site for the alkyne substrate, while activating its terminal C-H bond.

7.
Chem Commun (Camb) ; 54(6): 619-622, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29299561

RESUMEN

Platinum(ii) complex [Pt(ItBu')(ItBu)][BArF4] (1a) is a highly active and selective catalyst in the dehydrocoupling of amines and silanes at part-per-million catalyst loadings (up to 10 ppm, 0.001 mol%), achieving the highest TON and TOF numbers reported in the literature (up to 1 mmol scale). NMR studies suggest a process taking place through electrophilic activation of the silane by the platinum species, assisted by an amine.

8.
Angew Chem Int Ed Engl ; 56(51): 16267-16271, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29105241

RESUMEN

Reversible stepwise chain growth in linear CuI assemblies can be achieved by using the dynamic, unsymmetric naphthyridinone-based ligand scaffolds L1 and L2. With the same ligand scaffolds, the length of the linear copper chain can be varied from two to three and four copper atoms, and the nuclearity of the complex is easily controlled by the stepwise addition of a CuI precursor to gradually increase the chain length, or by the reductive removal of Cu atoms to decrease the chain length. This represents a rare example of a stepwise controlled chain growth in extended metal atom chains (EMACs). All complexes are formed with excellent selectivity, and the mutual transformations of the complexes of different nuclearity were found to be fast and reversible. These unusual rearrangements of metal chains of different nuclearities were achieved by a stepwise "sliding" movement of the naphthyridinone bridging fragment along the metal chain.

9.
Angew Chem Int Ed Engl ; 55(24): 6942-5, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-27100379

RESUMEN

Efficient iron-catalyzed homocoupling of terminal alkynes and cross-dimerization of aryl acetylenes with trimethylsilylacetylene is reported. The complex [Fe(H)(BH4 )(iPr-PNP)] (1) catalyzed the (cross-)dimerization of alkynes at room temperature, with no need for a base or other additives, to give the corresponding dimerized products with Z selectivity in excellent yields (79-99 %).

10.
Inorg Chem ; 54(9): 4526-38, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25871886

RESUMEN

A novel pincer ligand based on the pyrazine backbone (PNzP) has been synthesized, (2,6-bis(di(tert-butyl)phosphinomethyl)pyrazine), tBu-PNzP. It reacts with FeBr2 to yield [Fe(Br)2(tBu-PNzP)], 1. Treatment of 1 with NaBH4 in MeCN/MeOH gives the hydride complex [Fe(H)(MeCN)2(tBu-PNzP)][X] (X = Br, BH4), 2·X. Counterion exchange and exposure to CO atmosphere yields the complex cis-[Fe(H)(CO)(MeCN)(tBu-PNzP)][BPh4] 4·BPh4, which upon addition of Bu4NCl forms [Fe(H)(Cl)(CO)(tBu-PNzP)] 5. Complex 5, under basic conditions, catalyzes the hydrogenation of CO2 to formate salts at low H2 pressure. Treatment of complex 5 with a base leads to aggregates, presumably of dearomatized species B, stabilized by bridging to another metal center by coordination of the nitrogen at the backbone of the pyrazine pincer ligand. Upon dissolution of compound B in EtOH the crystallographically characterized complex 7 is formed, comprised of six iron units forming a 6-membered ring. The dearomatized species can activate CO2 and H2 by metal-ligand cooperation (MLC), leading to complex 8, trans-[Fe(PNzPtBu-COO)(H)(CO)], and complex 9, trans-[Fe(H)2(CO)(tBu-PNzP)], respectively. Our results point at a very likely mechanism for CO2 hydrogenation involving MLC.

11.
Inorg Chem ; 53(8): 4257-68, 2014 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-24716606

RESUMEN

The reactivity toward H2 of coordinatively unsaturated Pt(II) complexes, stabilized by N-heterocyclic carbene (NHC) ligands, is herein analyzed. The cationic platinum complexes [Pt(NHC')(NHC)](+) (where NHC' stands for a cyclometalated NHC ligand) react very fast with H2 at room temperature, leading to hydrogenolysis of the Pt-CH2 bond and concomitant formation of hydride derivatives [PtH(NHC)2](+) or hydrido-dihydrogen complexes [PtH(H2)(NHC)2](+). The latter species release H2 when these compounds are subjected to vacuum. The X-ray structure of complex [PtH(IPr)2][SbF6] revealed its unsaturated nature, exhibiting a true T-shaped structure without stabilization by agostic interactions. Density functional theory calculations indicate that the binding and reaction of H2 in complexes [PtH(H2)(NHC)2](+) is more favored for derivatives bearing aryl-substituted NHCs (IPr, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene and IMes = 1,3-dimesityl-1,3-dihydro-2H-imidazol-2-ylidene) than for those containing tert-butyl groups (I(t)Bu). This outcome is related to the higher close-range steric effects of the I(t)Bu ligands. Accordingly, H/D exchange reactions between hydrides [PtH(NHC)2](+) and D2 take place considerably faster for IPr and IMes* derivatives than for I(t)Bu ones. The reaction mechanisms for both H2 addition and H/D exchange processes depend on the nature of the NHC ligand, operating through oxidative addition transition states in the case of IPr and IMes* or by a σ-complex assisted-metathesis mechanism in the case of I(t)Bu.

12.
Chem Commun (Camb) ; 50(11): 1299-301, 2014 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-24346485

RESUMEN

The thermally stable, paramagnetic Pt(iii) complex [PtI2(IPr)2][BAr(F)] has been prepared by oxidation of the Pt(ii) complex [PtI2(IPr)2] with iodine in the presence of NaBAr(F). X-ray crystallographic studies revealed the mononuclear nature of this species with a square-planar geometry. EPR and DFT studies pointed out to a metal-centred radical.

13.
J Am Chem Soc ; 134(37): 15261-4, 2012 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-22934962

RESUMEN

Addition of Br(2) or I(2) to 14-electron, cationic Pt(II)-alkyl complexes led to the formation of the corresponding carbon-halogen Pt(II) coupling products. Low temperature experiments with Br(2) allowed us to isolate and characterize crystallographically a very unusual mononuclear, paramagnetic Pt(III)-alkyl intermediate with a seesaw structure that can be further oxidized to a transient Pt(IV) species before reductive carbon-halogen coupling reaction takes place.

14.
Angew Chem Int Ed Engl ; 51(16): 3936-9, 2012 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-22407835

RESUMEN

Small change matters: T-shaped Pt(II) complexes with less flexible substituents, than, for example, isopropyl or tert-butyl groups, on N-heterocyclic carbene (NHC) ligands allow for C-H bond activation reactions of aromatic compounds (see scheme; BAr(f)(4)(-) =tetrakis[(3,5-trifluoromethyl)phenyl]borate; F yellow, Pt red). NHC substituents that are not highly branched prevent agostic interactions and reduce the barriers to achieve the C-H bond cleavage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...