Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Ocul Immunol Inflamm ; : 1-15, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38127798

RESUMEN

PURPOSE: To explore the role of the proinflammatory cytokine, macrophage migration inhibitory factor (MIF), in a murine model of dry eye disease (DED). METHODS: The role of MIF on DED was determined using genetically MIF deficient mice and pharmacological inhibition of MIF. DED was induced with 0.5 mg of scopolamine via subcutaneous injection in wild type (WT) and mice lacking MIF (Mif-/-), three times a day for 21 days. DED signs, tear volume, ferning pattern and cytology impression were evaluated. Also, eye tissues were collected to determine transcripts of key inflammatory mediators and histopathological damage. In a second set of experiments, we neutralized MIF with ISO-1, an isozaxiline-derivative MIF tautomerase activity-inhibiting small molecule in WT mice, following an acute DED model for 10 days. ISO-1 was given starting on day 3 after DED induction and signs were evaluated, including a recovery phase in both experimental approaches. RESULTS: When compared to WT, Mif-/- mice showed attenuated signs of DED like preserved mucin pattern and increased tear volume. Also, Mif-/- mice maintained conjunctival epithelial cells and less corneal damage, associated with lower levels of TNFα and IL-1ß. At recovery phase, Mif-/- mice presented improved signs. Interestingly, in cornea and conjunctiva the absence of MIF selectively downregulated the transcription of inflammatory enzymes like inos and nox4 whereas displayed enhanced transcripts of il-4, il-13, tgfß and cox2. Finally, pharmacological inhibition of MIF using ISO-1, replicated the above findings in the mouse model. CONCLUSION: MIF is a central positive mediator of the inflammatory process in experimental DED, thus, targeting MIF could be used as a novel therapy in ocular surface inflammatory pathologies.

2.
J Phys Chem A ; 125(39): 8680-8690, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34582214

RESUMEN

We use molecular dynamics to calculate the rotational and vibrational energy relaxation of C2H6 in Ar, Kr, and Xe bath gases over a pressure range of 10-400 atm and at temperatures of 300 and 800 K. The C2H6 is instantaneously excited by 80 kcal/mol randomly distributed into both vibrational and rotational modes. The computed relaxation rates show little sensitivity to the identity of the noble gas in the bath. Vibrational relaxation rates show a nonlinear pressure dependence at 300 K. At 800 K the reduced range of bath gas densities covered by the range of pressures does not yet show any nonlinearity in the pressure dependence. Rotational relaxation is characterized with two relaxation rates. The slower rate is comparable to the vibrational relaxation rate. The faster rate has a linear pressure dependence at 300 K but an irregular, nonlinear pressure dependence at 800 K. To understand this, a model was developed based on approximating the periodic box used in the molecular dynamics simulations by an equal-volume collection of cubes where each cube is sized to allow only single occupancy by the noble gas or the molecule. Combinatorial statistics then leads to a pressure- and temperature-dependent analytic distribution of the bath gas species the molecule encounters in a collision. This distribution, the dissociation energy of molecule/bath gas complexes and bath gas clusters, and the computed energy release per collision combine to show that only at 300 K is the energy release sufficient to dissociate likely complexes and clusters. This suggests that persistent and pressure-dependent clusters and complexes at 800 K may be responsible for the nonlinear pressure dependence of rotational relaxation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36284640

RESUMEN

Endometriosis is a chronic gynecological disorder characterized by the growth of endometrial glands and stroma outside the endometrial cavity producing inflammation and pain. Previously we demonstrated that modulation of the hypothalamic pituitary adrenal (HPA) axis exacerbates the development and severity of this condition. A physically active lifestyle has been shown to confer health benefits in many chronic conditions by potentially acting as a stress buffer, thus we hypothesized that voluntary physical exercise can 'realign/reset' the HPA axis resulting in reduced endometriosis symptoms in an animal model. Methods: Endometriosis was induced in female Sprague Dawley rats by implanting uterine tissue next to the intestinal mesentery on day 0. Sham controls received sutures only. One group of endometriosis animals had access to a running wheel for 2 weeks prior to endometriosis induction until time of sacrifice at day 60. Sham and endometriosis controls received no exercise. All animals were examined for developed vesicles which were collected and measured. Uterine tissue was analyzed for cellular infiltration. Brain, liver, spleen, adrenal glands, leg muscles and fat were collected, along with peritoneal fluid and blood. Results: Endometriosis animals developed vesicles in 86.96% of the implants with significantly increased mesenteric fat compared to sham (p<0.05). Exposure to exercise significantly decreased the size (p<0.01) and number (p<0.05) of vesicles that developed, as well as the mesenteric fat (p<0.01). Exercised animals had higher levels of lactoferrin in peritoneal fluid, and decreased serum fractalkine and leptin. Exercise significantly increased estrogen alpha receptor expression levels (p<0.01), while significantly decreasing estrogen receptor beta expression (p<0.01) and macrophage infiltration (p<0.05) in vesicles compared to non- exercised animals. Conclusions: Our results suggest that voluntary physical activity might protect against endometriosis and alleviate the associated inflammation via immune modulation of the HPA axis. This offers the potential for further exploration of exercise as a complementary therapy in endometriosis patients.

4.
Geriatr Nurs ; 41(6): 1017-1019, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33158626

RESUMEN

The Certified Registered Nurse Anesthetists (CRNA) workforce is aging. It is estimated that nearly half (49.7%) of the CRNA workforce is age 50 or greater, with those practicing in management positions and as educators having the oldest mean ages. Older CRNAs face workplace challenges that can lead to decreased productivity and overall job satisfaction. Common injuries to older practitioners result from repetitive motion, slips and falls, needle sticks, fatigue, and emotional or mental health related illness. Because of the high acuity environment in which CRNAs practice they are at an elevated risk for these injuries. Creating a healthy and supportive work environment has been shown to improve the retention of aging healthcare workers, and succession planning is essential in preparing for their retirement.


Asunto(s)
Satisfacción en el Trabajo , Enfermeras Anestesistas , Envejecimiento , Humanos , Recursos Humanos , Lugar de Trabajo
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4982-4985, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33019105

RESUMEN

Sleep disorders are extremely common in today's society and are greatly affecting the health and safety of every person suffering from one. Over the last decades, Automatic Sleep Stage Classification (ASSC) systems have been developed to assist specialists in the sleep stage scoring process and therefore in the diagnosis of sleep disorders. Binaural beats are auditory phenomena that have been shown to have a positive impact in sleep quality and mental state. This paper introduces a framework that combines an ASSC system and a binaural beats generator in real time. Our goal is to pave the way for developing systems which could reproduce specific binaural beats depending on the detected sleep stage, in order to entrain the brain into a more efficient sleep. For the ASSC stage, different classifiers were evaluated using data signals retrieved from a public sleep stage signals database, corresponding to ten subjects. The complete framework was tested using the database signals and signals from a test subject, captured and processed in real time. Our proposed framework may lead to a fully automated system to improve sleep quality without the need of medication.


Asunto(s)
Fases del Sueño , Trastornos del Sueño-Vigilia , Bases de Datos Factuales , Humanos , Polisomnografía , Trastornos del Sueño-Vigilia/diagnóstico
6.
J Phys Chem A ; 124(8): 1648-1658, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32065524

RESUMEN

This work presents a new force-based canonical approach that utilizes the average force rather than the pointwise force, on which previously developed canonical approaches were based. Advantageously, the average force based method only requires the evaluation of the potential function and not its derivative. The average force and the pointwise force based methods are applied to a variety of diatomic molecules, and their accuracy is compared. It is demonstrated that the average force based method gives an improved accuracy compared to the pointwise force based method. This improved accuracy is attributed to the fact that the average force based method eliminates the need to use the numerical approximation of the derivative of the potential function that, in practice, is only known at discrete points. In addition, an algorithm is developed to apply the average force based method as a practical tool for generating potential curves for pairwise interatomic interactions utilizing the classical Lennard-Jones potential as reference. Moreover, application of the average force based method leads to a new canonical approximation paradigm. In this new paradigm, only the coordinates of the equilibrium configuration (the bottom of the potential well) of a molecule are required for accurate generation of the potential function. Moreover, theoretical results are presented, demonstrating the effectiveness of the canonical transformation procedure in producing highly accurate potential approximations. In particular, it is proved that a certain general set of qualitative conditions on potential-like functions are sufficient for a given potential function to be in the same canonical transformation class as a (dimensionless) Lennard-Jones potential. For functions satisfying these assumptions, it is shown that they have canonical approximations with arbitrarily small approximation errors.

7.
J Chem Phys ; 151(3): 034303, 2019 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-31325951

RESUMEN

In our previous work [Rivera-Rivera et al., J. Chem. Phys. 142, 014303 (2015)], classical molecular dynamics simulations followed the relaxation, in a 300 K Ar bath at a pressure of 10-400 atm, of nitromethane (CH3NO2) instantaneously excited by statistically distributing 50 kcal/mol among all its internal degrees of freedom. Both rotational and vibrational energies decayed with nonexponential curves. The present work explores mode-specific mechanisms at work in the decay process. With the separation of rotation and vibration developed by Rhee and Kim [J. Chem. Phys. 107, 1394 (1997)], one can show that the vibrational kinetic energy decomposes only into vibrational normal modes, while the rotational and Coriolis energies decompose into both vibrational and rotational normal modes. The saved CH3NO2 positions and momenta were converted into mode-specific energies whose decay was monitored over 1000 ps. The results identify vibrational and rotational modes that promote/resist energy lost and drive nonexponential behavior.

8.
J Phys Chem A ; 123(2): 537-543, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30607945

RESUMEN

A new force-based canonical approach for the accurate generation of multidimensional potential energy surfaces is demonstrated. Canonical transformations previously developed for diatomic molecules are used to construct accurate approximations to the 3-dimensional potential energy surface of the water molecule from judiciously chosen (adopting the right coordinate system) 1-dimensional planar slices that are shown to have the same canonical shape as the classical Lennard-Jones potential curve. Spline interpolation is then used to piece together the 1-dimensional canonical potential curves, to obtain the full 3-dimensional potential energy surface of a water molecule with a relative error less than 0.01. This work provides an approach to greatly reduce the computational cost of constructing potential energy surfaces in molecules from ab initio calculations. The canonical transformation techniques developed in this work illuminate a pathway to deepening our understanding of chemical bonding.

9.
Open Med Chem J ; 11: 54-65, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28761559

RESUMEN

OBJECTIVES: The present study evaluates novel cationic quinoline derivatives known as benzimidazo[3,2-a]quinolinium salts (BQS) named NBQ-48 and ABQ-48 that have structural similarities to known anti-cancer substances such as ellipticine and berberine. METHODS: Toledo human lymphoma (ATCC CRL2631) cells were treated for 24 to 48 hours. Apoptosis related endpoints such as cell cycle arrest, mitochondrial damage, RNS and ROS generation and the activity of several apoptosis related proteins such as caspases and apoptosis inducing factor (AIF) were studied using fluorescence staining and western blot respectively. RESULTS: Results indicated a higher toxicity from the amino substituted ABQ-48 versus the NBQ-48 (GI50's of 50uM versus 100uM respectively). Both compounds induced cell death through various apoptosis related endpoints including a decrease in mitochondrial membrane potential with an increase in ROS and activation of the effector caspase 3. Interestingly, AIF release was observed on cells treated with the amino substituted ABQ-48 but not on the nitro substituted NBQ-48 samples suggesting a caspase independent mechanism for ABQ-48. CONCLUSIONS: The results obtained presents the toxic effects of two novel benzimidazo[3,2-a]quinolinium salts in human lymphoma tumor cells. The identified mechanism of action includes multiple apoptosis related effects. Furthermore the data presents a clear variation in caspase dependent or independent mechanism for each compound.

10.
Phys Chem Chem Phys ; 19(24): 15864-15869, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28589191

RESUMEN

The concept of chemical bonding is normally presented and simplified through two models: the covalent bond and the ionic bond. Expansion of the ideal covalent and ionic models leads chemists to the concepts of electronegativity and polarizability, and thus to the classification of polar and non-polar bonds. In addition, the intermolecular interactions are normally viewed as physical phenomena without direct correlation to the chemical bond in any simplistic model. Contrary to these traditional concepts of chemical bonding, recently developed canonical approaches demonstrate a unified perspective on the nature of binding in pairwise interatomic interactions. This new canonical model, which is a force-based approach with a basis in fundamental molecular quantum mechanics, confirms much earlier assertions that in fact there are no fundamental distinctions among covalent bonds, ionic bonds, and intermolecular interactions including the hydrogen bond, the halogen bond, and van der Waals interactions.

11.
J Phys Chem A ; 120(42): 8347-8359, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27676168

RESUMEN

Canonical approaches are applied to classic Morse, Lennard-Jones, and Kratzer potentials. Using the canonical transformation generated for the Morse potential as a reference, inverse transformations allow the accurate generation of the Born-Oppenheimer potential for the H2+ ion, neutral covalently bound H2, van der Waals bound Ar2, and the hydrogen bonded one-dimensional dissociative coordinate in a water dimer. Similar transformations are also generated using the Lennard-Jones and Kratzer potentials as references. Following application of inverse transformations, vibrational eigenvalues generated from the Born-Oppenheimer potentials give significantly improved quantitative comparison with values determined from the original accurately known potentials. In addition, an algorithmic strategy based upon a canonical transformation to the dimensionless form applied to the force distribution associated with a potential is presented. The resulting canonical force distribution is employed to construct an algorithm for deriving accurate estimates for the dissociation energy, the maximum attractive force, and the internuclear separations corresponding to the maximum attractive force and the potential well.

12.
J Phys Chem A ; 120(20): 3718-25, 2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-27143175

RESUMEN

Force-based canonical approaches have recently given a unified but different viewpoint on the nature of bonding in pairwise interatomic interactions. Differing molecular categories (covalent, ionic, van der Waals, hydrogen, and halogen bonding) of representative interatomic interactions with binding energies ranging from 1.01 to 1072.03 kJ/mol have been modeled canonically giving a rigorous semiempirical verification to high accuracy. However, the fundamental physical basis expected to provide the inherent characteristics of these canonical transformations has not yet been elucidated. Subsequently, it was shown through direct numerical differentiation of these potentials that their associated force curves have canonical shapes. However, this approach to analyzing force results in inherent loss of accuracy coming from numerical differentiation of the potentials. We now show that this serious obstruction can be avoided by directly demonstrating the canonical nature of force distributions from the perspective of the Hellmann-Feynman theorem. This requires only differentiation of explicitly known Coulombic potentials, and we discuss how this approach to canonical forces can be used to further explain the nature of chemical bonding in pairwise interatomic interactions. All parameter values used in the canonical transformation are determined through explicit physical based algorithms, and it does not require direct consideration of electron correlation effects.

13.
J Phys Chem A ; 120(5): 817-23, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26788937

RESUMEN

Canonical approaches are applied for investigation of the extraordinarily accurate electronic ground state potentials of H2(+), H2, HeH(+), and LiH using the virial theorem. These approaches will be dependent on previous investigations involving the canonical nature of E(R), the Born-Oppenheimer potential, and F(R), the associated force of E(R), that have been demonstrated to be individually canonical to high accuracy in the case of the systems investigated. Now, the canonical nature of the remaining functions in the virial theorem [the electronic kinetic energy T(R), the electrostatic potential energy V(R), and the function W(R) = RF(R)] are investigated and applied to H2, HeH(+), and LiH with H2(+) chosen as reference. The results will be discussed in the context of a different perspective of molecular bonding that goes beyond previous direct applications of the virial theorem.

14.
IEEE J Biomed Health Inform ; 20(3): 787-801, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26469789

RESUMEN

Symptoms of voice disorder may range from slight hoarseness to complete loss of voice; from modest vocal effort to uncomfortable neck pain. But even minor symptoms may still impact personal and especially professional lives. While early detection and diagnosis can ameliorate that effect, to date, we are still largely missing reliable and valid data to help us better screen for voice disorders. In our previous study, we started to address this gap in research by introducing an ambulatory voice monitoring system using surface electromyography (sEMG) and a robust algorithm (HiGUSSS) for pattern recognition of vocal gestures. Here, we expand on that work by further analyzing a larger set of simulated vocal dysfunctions. Our goal is to demonstrate that such a system has the potential to recognize and detect real vocal dysfunctions from multiple individuals with high accuracy under both intra and intersubject conditions. The proposed system relies on four sEMG channels to simultaneously process various patterns of sEMG activation in the search for maladaptive laryngeal activity that may lead to voice disorders. In the results presented here, our pattern recognition algorithm detected from two to ten different classes of sEMG patterns of muscle activation with an accuracy as high as 99%, depending on the subject and the testing conditions.


Asunto(s)
Electromiografía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Procesamiento de Señales Asistido por Computador , Trastornos de la Voz/diagnóstico , Adolescente , Adulto , Algoritmos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Artículo en Inglés | MEDLINE | ID: mdl-26086027

RESUMEN

ABQ-48 (3-amino-7-benzylbenzimidazo[3,2-a]quinolinium chloride) and NBQ-48 (3-nitro-7-benzylbenzimidaw[3,2-a] quinolinium chloride) are un-natural alkaloids containing a planar heteroaromatic systems characterized by quaternized nitrogen fused to benzothiazole nucleus. Both compounds are structurally related to naturally occurring substances such as elliptine (from Ochrosia), and berberine (from Berberis). Previous in vitro studies have shown these agents to control tumor-cell proliferation indicating that both BQS are active but especially ABQ-48 at a 1 OuM dose with over 80% control of the proliferation of multiple cancer cell lines from various etiologies including colon, melanoma, CNS and ovarian cells. Mechanism of action studies have also been conducted however this is the first approach to evaluate immune modulatory activity of these novel BQS. Immune-based therapy is an increasing field in which scientists identify how the immunomodulatory activity of known and newly discovered compounds elicits an immune response that could be used against diseases. In this study, our main objective was to apply an in vitro model to show the immunomodulatory effects of ABQ-48 and NBQ-48 by analyzing the cytokine profile resulting after extracted murine spleen cells were treated with both BQS using a fluorescence-based multiplex ELISA approach. Screened cytokines included: G-CSF, GM-CSF, IL-1a, IL-2, IL-3, IL-5, IL-6, IL-7, IL-10, IL-12p70, IL-13, IL-15, IL-17, IL-21, IL-23, IFN-γ, and TNF-α. Our study results show ABQ 48 and NBQ-48 to stimulate the release of G-CSF, IL-2, IL-6, and, IFN-γ when mouse splenocytes are incubated with serial dilutions of these agents. Our finding opens new possibilities of potentially using ABQ-48 and NBQ-48 as immunomodulatory agents; with intend to activate the immune system such as the production of neutrophils against cancer or reducing chemotherapy side effects.

16.
J Phys Chem A ; 119(25): 6753-8, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26039880

RESUMEN

A generalized formulation of canonical transformations and spectra are used to investigate the concept of a canonical potential strictly within the Born-Oppenheimer approximation. Data for the most accurate available ground electronic state pairwise intermolecular potentials in H2, HD, D2, HeH(+), and LiH are used to rigorously evaluate such transformations. The corresponding potentials are generated explicitly using parameters calculated with algebraic functions from that of the single canonical potential of the simplest molecule, H2(+). The efficacy of this approach is further tested by direct comparison of the predicted eigenvalues of all vibrational states in the selected molecular systems considered with the corresponding most accurately known Born-Oppenheimer eigenvalues currently available. Deviations are demonstrated to be less than 2 cm(-1) for all vibrational states in H2, HD, D2, HeH(+), and LiH, with an average standard deviation of 0.27 cm(-1) for the 87 states considered. The implications of these results for molecular quantum chemistry are discussed.

17.
Phys Chem Chem Phys ; 17(22): 14805-10, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25978527

RESUMEN

A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.

18.
J Chem Phys ; 142(1): 014303, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25573557

RESUMEN

Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.

19.
PLoS One ; 9(6): e99662, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24927195

RESUMEN

BACKGROUND: The epidemiological profile and trends of road traffic injuries (RTIs) in Peru have not been well-defined, though this is a necessary step to address this significant public health problem in Peru. The objective of this study was to determine trends of incidence, mortality, and fatality of RTIs in Peru during 1973-2008, as well as their relationship to population trends such as economic growth. METHODS AND FINDINGS: Secondary aggregated databases were used to estimate incidence, mortality and fatality rate ratios (IRRs) of RTIs. These estimates were standardized to age groups and sex of the 2008 Peruvian population. Negative binomial regression and cubic spline curves were used for multivariable analysis. During the 35-year period there were 952,668 road traffic victims, injured or killed. The adjusted yearly incidence of RTIs increased by 3.59 (95% CI 2.43-5.31) on average. We did not observe any significant trends in the yearly mortality rate. The total adjusted yearly fatality rate decreased by 0.26 (95% CI 0.15-0.43), while among adults the fatality rate increased by 1.25 (95% CI 1.09-1.43). Models fitted with splines suggest that the incidence follows a bimodal curve and closely followed trends in the gross domestic product (GDP) per capita. CONCLUSIONS: The significant increasing incidence of RTIs in Peru affirms their growing threat to public health. A substantial improvement of information systems for RTIs is needed to create a more accurate epidemiologic profile of RTIs in Peru. This approach can be of use in other similar low and middle-income settings to inform about the local challenges posed by RTIs.


Asunto(s)
Accidentes de Tránsito/mortalidad , Accidentes de Tránsito/tendencias , Heridas y Lesiones/epidemiología , Accidentes de Tránsito/estadística & datos numéricos , Bases de Datos Factuales , Femenino , Humanos , Incidencia , Sistemas de Información , Masculino , Perú/epidemiología , Salud Pública , Factores de Riesgo
20.
J Phys Chem A ; 117(35): 8477-83, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23895042

RESUMEN

Potential morphing has been applied to the investigation of proper blue frequency shifts, Δν0 in CO, the hydrogen acceptor complexing in the hydrogen bonded series OC-HX (X= F, Cl, Br, I, CN, CCH). Linear correlations of morphed hydrogen bonded ground dissociation energies D0 with experimentally determined Δν0 free from matrix and solvent effects demonstrate consistency with original tenets of the Badger-Bauer rule (J. Chem. Phys. 1937, 5, 839-51). A model is developed that provides a basis for explaining the observed linear correlations in the range of systems studied. Furthermore, the generated calibration curve enables prediction of dissociation energies for other related but different complexes. The latter include D0 for H2O-CO, H2S-CO, and CH3OH-CO which are predicted by interpolation and found to be 355(13), 171(11), and 377(14) cm(-1) respectively from available experimentally determined proton acceptor shifts. Results from this study will also be discussed in relation to investigations in which CO has been used as a probe of heme protein active sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...