Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 258: 112638, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878680

RESUMEN

Bacteria use the second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) to control biofilm formation and other key phenotypes in response to environmental signals. Changes in oxygen levels can alter c-di-GMP signaling through a family of proteins termed globin coupled sensors (GCS) that contain diguanylate cyclase domains. Previous studies have found that GCS diguanylate cyclase activity is controlled by ligand binding to the heme within the globin domain, with oxygen binding resulting in the greatest increase in catalytic activity. Herein, we present evidence that heme-edge residues control O2-dependent signaling in PccGCS, a GCS protein from Pectobacterium carotovorum, by modulating heme distortion. Using enzyme kinetics, resonance Raman spectroscopy, small angle X-ray scattering, and multi-wavelength analytical ultracentrifugation, we have developed an integrated model of the full-length PccGCS tetramer and have identified conformational changes associated with ligand binding, heme conformation, and cyclase activity. Taken together, these studies provide new insights into the mechanism by which O2 binding modulates activity of diguanylate cyclase-containing GCS proteins.


Asunto(s)
Proteínas Bacterianas , Hemo , Pectobacterium carotovorum , Liasas de Fósforo-Oxígeno , Liasas de Fósforo-Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Hemo/química , Hemo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pectobacterium carotovorum/enzimología , Conformación Proteica , Oxígeno/química , Oxígeno/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas de Escherichia coli
2.
Biotechnol Bioeng ; 120(7): 1902-1913, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148495

RESUMEN

Precipitation can be used for the removal of impurities early in the downstream purification process of biologics, with the soluble product remaining in the filtrate through microfiltration. The objective of this study was to examine the use of polyallylamine (PAA) precipitation to increase the purity of product via higher host cell protein removal to enhance polysorbate excipient stability to enable a longer shelf life. Experiments were performed using three monoclonal antibodies (mAbs) with different properties of isoelectric point and IgG subclass. High throughput workflows were established to quickly screen precipitation conditions as a function of pH, conductivity and PAA concentrations. Process analytical tools (PATs) were used to evaluate the size distribution of particles and inform the optimal precipitation condition. Minimal pressure increase was observed during depth filtration of the precipitates. The precipitation was scaled up to 20L size and the extensive characterization of precipitated samples after protein A chromatography showed >75% reduction of host cell protein (HCP) concentrations (by ELISA), >90% reduction of number of HCP species (by mass spectrometry), and >99.8% reduction of DNA. The stability of polysorbate containing formulation buffers for all three mAbs in the protein A purified intermediates was improved at least 25% after PAA precipitation. Mass spectrometry was used to obtain additional understanding of the interaction between PAA and HCPs with different properties. Minimal impact on product quality and <5% yield loss after precipitation were observed while the residual PAA was <9 ppm. These results expand the toolbox in downstream purification to solve HCP clearance issues for programs with purification challenges, while also providing important insights into the integration of precipitation-depth filtration and the current platform process for the purification of biologics.


Asunto(s)
Productos Biológicos , Polímeros , Cricetinae , Animales , Cricetulus , Polisorbatos , Anticuerpos Monoclonales/química , Células CHO
3.
J Chromatogr A ; 1675: 463161, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35635865

RESUMEN

The mass spectrometry based multi-attribute method (MAM) has gained popularity in the field of biopharmaceutical analysis as it promises a single method for comprehensive monitoring of multiple product quality attributes (PQAs) and product purity. Sample preparation for protein digestion and peptide separation are critical considerations for a reduced peptide mapping-based MAM. To avoid desalting steps required in most tryptic protein digestion and in order to improve peptide separation for hydrophilic peptides, we developed an improved robust sample preparation using lysyl endopeptidase (Lys-C) for high-throughput MAM testing. Additionally, this method optimizes the peptide retention and separation of a stability-indicating VSNK peptide using a HSS T3 column for comprehensive PQA monitoring. A fully automated sample preparation had similar assay variations for PQAs monitoring compared to manual sample preparation. To the best of our knowledge, this is the first report of a high-resolution MS-based MAM using a streamlined Lys-C digestion without desalting with enhanced PQA monitoring for hydrophilic peptides. The improved, robust MAM workflow for protein digestion and peptide separation will pave the way for broader MAM qualification and its applications for the characterization and quality control of therapeutic monoclonal antibodies.


Asunto(s)
Anticuerpos Monoclonales , Péptidos , Anticuerpos Monoclonales/química , Digestión , Mapeo Peptídico/métodos , Péptidos/análisis , Serina Endopeptidasas
4.
Environ Manage ; 68(3): 329-339, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160659

RESUMEN

Conservation actions to safeguard climate change vulnerable species may not be utilized due to a variety of perceived barriers. Assisted colonization, the intentional movement and release of an organism outside its historical range, is one tool available for species predicted to lose habitat under future climate change scenarios, particularly for single island or single mountain range endemic species. Despite the existence of policies that allow for this action, to date, assisted colonization has rarely been utilized for species of conservation concern in the Hawaiian Islands. Given the potential for climate driven biodiversity loss, the Hawaiian Islands are a prime location for the consideration of adaptation strategies. We used first-person interviews with conservation decision makers, managers, and scientists who work with endangered species in the Hawaiian Islands to identify perceived barriers to the use of assisted colonization. We found that assisted colonization was often not considered or utilized due to a lack of expertize with translocations; ecological risk and uncertainty, economic constraints, concerns regarding policies and permitting, concerns with public perception, and institutional resistance. Therefore, conservation planners may benefit from decision tools that integrate risk and uncertainty into decision models, and compare potential outcomes among conservation actions under consideration, including assisted colonization. Within a decision framework that addresses concerns, all conservation actions for climate sensitive species, including assisted colonization, may be considered in a timely manner.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Animales , Biodiversidad , Ecosistema , Especies en Peligro de Extinción , Hawaii , Humanos
5.
Anal Chem ; 93(23): 8161-8169, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34032423

RESUMEN

Polysorbate is widely used to maintain stability of biotherapeutic proteins in pharmaceutical formulation development. Degradation of polysorbate can lead to particle formation in drug products, which is a major quality concern and potential patient risk factor. Enzymatic activity from residual host cell enzymes such as lipases and esterases plays a major role for polysorbate degradation. Their high activity, often at very low concentration, constitutes a major analytical challenge in the biopharmaceutical industry. In this study, we evaluated and optimized the activity-based protein profiling (ABPP) approach to identify active enzymes responsible for polysorbate degradation. Using an optimized chemical probe, we established the first global profile of active serine hydrolases in harvested cell culture fluid (HCCF) for monoclonal antibodies (mAbs) production from two Chinese hamster ovary (CHO) cell lines. A total of eight known lipases were identified by ABPP with enzyme activity information, while only five lipases were identified by a traditional abundance-based proteomics (TABP) approach. Interestingly, phospholipase B-like 2 (PLBL2), a well-known problematic HCP was not found to be active in process-intermediates from two different mAbs. In a proof-of-concept study with downstream samples, phospholipase A2 group VII (PLA2G7) was only identified by ABPP and confirmed to contribute to polysorbate-80 degradation for the first time. The established ABBP approach is approved to be able to identify low-abundance host cell enzymes and fills the gap between lipase abundance and activity, which enables more meaningful polysorbate degradation investigations for biotherapeutic development.


Asunto(s)
Productos Biológicos , Polisorbatos , Animales , Anticuerpos Monoclonales , Células CHO , Cricetinae , Cricetulus , Humanos
6.
Animals (Basel) ; 11(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567709

RESUMEN

Increased focus on the illegal global wildlife trade has resulted in greater numbers of live animals confiscated by authorities, increasing the need to manage these animals responsibly. Most wildlife seizures take place in Southeast Asia, with global demand for live animals fuelling much of the trafficking. Guidelines for the 'disposal' of live specimens are provided by the Convention on the International Trade in Endangered Species of Wild Fauna and Flora (CITES), although individual Parties must implement provisions through national laws and regulations. 'Disposal' is the term used for the management of illegally traded wildlife upon confiscation. Confiscated live animals can be euthanised (i.e., killed), repatriated to their native country and released, or kept in captivity. This study investigates barriers to proper care and disposal of confiscated live animals in Southeast Asia, where roughly one quarter of the global multibillion dollar illegal wildlife trade takes place. Interviews were conducted with 18 professionals working within conservation, wildlife crime, and confiscated live animal management. Eight limitations to the proper care and disposal of confiscated wildlife were identified: (1) political will, (2) policy, (3) funding, (4) capacity, (5) expertise (6) attitudes and behaviours, (7) exploitation, and (8) corruption. Based on interviews, we propose seven key reforms to support the efficient and humane management of illegally traded wildlife for national authorities and CITES parties. These are wildlife seizure management, legislative support, enhanced political will, demand reduction, global participation, registry of rescue centres, and terminology change. This research highlights major barriers to the proper care and disposal of live confiscated animals and proposes key reforms to improve the conservation of threatened species and the welfare of millions of illegally traded animals.

7.
Inorg Chem ; 57(22): 14386-14395, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30378421

RESUMEN

In order to respond to external stimuli, bacteria have evolved sensor proteins linking external signals to intracellular outputs that can then regulate downstream pathways and phenotypes. Globin coupled sensor proteins (GCSs) serve to link environmental O2 levels to cellular processes by coupling a heme-containing sensor globin domain to a catalytic output domain. However, the mechanism by which O2 binding activates these proteins is currently unknown. To provide insights into the signaling mechanism, two distinct dimeric complexes of the isolated globin domain of the GCS from Bordetella pertussis ( BpeGlobin) were solved via X-ray crystallography in which differences in ligand-bound states were observed. Both monomers of one dimer contain Fe(II)-O2 states, while the other dimer consists of the Fe(III)-H2O and Fe(II)-O2 states. These data provide the first molecular insights into the heme pocket conformation of the active Fe(II)-O2 form of these enzymes. In addition, heme distortion modes and heme-protein interactions were found to correlate with the ligation state of the globin, suggesting that these conformational changes play a role in O2-dependent signaling. Fourier transform infrared spectroscopy (FTIR) of the full-length GCS from B. pertussis ( BpeGReg) and the closely related GCS from Pectobacterium carotovorum ssp. carotovorum ( PccGCS) confirmed the importance of an ordered water within the heme pocket and two distal residues (Tyr43 and Ser68) as hydrogen-bond donors. Taken together, this work provides mechanistic insights into BpeGReg O2 sensing and the signaling mechanisms of diguanylate cyclase-containing GCS proteins.

8.
Bio Protoc ; 7(17)2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28966947

RESUMEN

The transcription factor Hypoxia-Inducible Factor (HIF) complexes with the coactivator p300, activating the hypoxia response pathway and allowing tumors to grow. The CH1 and CAD domains of each respective protein form the interface between p300 and HIF. Small molecule compounds are in development that target and inhibit HIF/p300 complex formation, with the goal of reducing tumor growth. High resolution NMR spectroscopy is necessary to study ligand interaction with p300-CH1, and purifying high quantities of properly folded p300-CH1 is needed for pursuing structural and biophysical studies. p300-CH1 has 3 zinc fingers and 9 cysteine residues, posing challenges associated with reagent compatibility and protein oxidation. A protocol has been developed to overcome such issues by incorporating zinc during expression and streamlining the purification time, resulting in a high yield of optimally folded protein (120 mg per 4 L expression media) that is suitable for structural NMR studies. The structural integrity of the final recombinant p300-CH1 has been verified to be optimal using onedimensional 1H NMR spectroscopy and circular dichroism. This protocol is applicable for the purification of other zinc finger containing proteins.

9.
Adv Microb Physiol ; 71: 133-169, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28760321

RESUMEN

The discovery of the globin-coupled sensor (GCS) family of haem proteins has provided new insights into signalling proteins and pathways by which organisms sense and respond to changing oxygen levels. GCS proteins consist of a sensor globin domain linked to a variety of output domains, suggesting roles in controlling numerous cellular pathways, and behaviours in response to changing oxygen concentration. Members of this family of proteins have been identified in the genomes of numerous organisms and characterization of GCS with output domains, including methyl accepting chemotaxis proteins, kinases, and diguanylate cyclases, have yielded an understanding of the mechanism by which oxygen controls activity of GCS protein output domains, as well as downstream proteins and pathways regulated by GCS signalling. Future studies will expand our understanding of these proteins both in vitro and in vivo, likely demonstrating broad roles for GCS in controlling oxygen-dependent microbial physiology and phenotypes.


Asunto(s)
Globinas/fisiología , Transducción de Señal , Adenilil Ciclasas/fisiología , Bordetella pertussis/metabolismo , Escherichia coli/metabolismo , Globinas/metabolismo , Oxígeno/metabolismo , Pectobacterium carotovorum/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología
10.
ACS Chem Biol ; 12(8): 2070-2077, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28612602

RESUMEN

Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O2-dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.


Asunto(s)
Globinas/química , Oxígeno , Pectobacterium carotovorum/fisiología , Percepción de Quorum , Globinas/metabolismo , Modelos Biológicos , Pectobacterium carotovorum/patogenicidad , Transducción de Señal , Virulencia
11.
Biochemistry ; 55(48): 6642-6651, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27933792

RESUMEN

Bacteria sense their environment to alter phenotypes, including biofilm formation, to survive changing conditions. Heme proteins play important roles in sensing the bacterial gaseous environment and controlling the switch between motile and sessile (biofilm) states. Globin coupled sensors (GCS), a family of heme proteins consisting of a globin domain linked by a central domain to an output domain, are often found with diguanylate cyclase output domains that synthesize c-di-GMP, a major regulator of biofilm formation. Characterization of diguanylate cyclase-containing GCS proteins from Bordetella pertussis and Pectobacterium carotovorum demonstrated that cyclase activity is controlled by ligand binding to the heme within the globin domain. Both O2 binding to the heme within the globin domain and c-di-GMP binding to a product-binding inhibitory site (I-site) within the cyclase domain control oligomerization states of the enzymes. Changes in oligomerization state caused by c-di-GMP binding to the I-site also affect O2 kinetics within the globin domain, suggesting that shifting the oligomer equilibrium leads to broad rearrangements throughout the protein. In addition, mutations within the I-site that eliminate product inhibition result in changes to the accessible oligomerization states and decreased catalytic activity. These studies provide insight into the mechanism by which ligand binding to the heme and I-site controls activity of GCS proteins and suggests a role for oligomerization-dependent activity in vivo.


Asunto(s)
Proteínas Bacterianas/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Globinas/metabolismo , Hemoproteínas/metabolismo , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Biocatálisis , Biopelículas , Bordetella pertussis/enzimología , Bordetella pertussis/metabolismo , Bordetella pertussis/fisiología , GMP Cíclico/química , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Globinas/química , Globinas/genética , Hemo/química , Hemo/metabolismo , Hemoproteínas/química , Hemoproteínas/genética , Cinética , Modelos Moleculares , Mutación , Oxígeno/química , Pectobacterium carotovorum/enzimología , Pectobacterium carotovorum/metabolismo , Pectobacterium carotovorum/fisiología , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/genética , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Homología de Secuencia de Aminoácido
12.
J Inorg Biochem ; 164: 70-76, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27614715

RESUMEN

Globin coupled sensors (GCS) are O2-sensing proteins used by bacteria to monitor the surrounding gaseous environment. To investigate the biphasic O2 dissociation kinetics observed for full-length GCS proteins, isolated globin domains from Pectobacterium carotovorum ssp. carotovorum (PccGlobin), and Bordetella pertussis (BpeGlobin), have been characterized. PccGlobin is found to be dimeric, while BpeGlobin is monomeric, indicating key differences in the globin domain dimer interface. Through characterization of wild type globin domains and globin variants with mutations at the dimer interface and within the distal pocket, dimerization of the globin domain is demonstrated to correlate with biphasic dissociation kinetics. Furthermore, a distal pocket tyrosine is identified as the primary hydrogen bond donor, while a secondary hydrogen bond donor within the distal heme pocket is involved in conformation(s) that lead to the second O2 dissociation rate. These findings highlight the role of the globin dimer interface in controlling properties of both the heme pocket and full-length GCS proteins.


Asunto(s)
Proteínas Bacterianas/química , Globinas/química , Hemo/química , Pectobacterium carotovorum/química , Proteínas Bacterianas/genética , Sitios de Unión , Globinas/genética , Hemo/genética , Pectobacterium carotovorum/genética , Dominios Proteicos
13.
Nat Commun ; 7: 12381, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27488264

RESUMEN

Bacteria have evolved numerous pathways to sense and respond to changing environmental conditions, including, within Gram-positive bacteria, the stressosome complex that regulates transcription of general stress response genes. However, the signalling molecules recognized by Gram-positive stressosomes have yet to be identified, hindering our understanding of the signal transduction mechanism within the complex. Furthermore, an analogous pathway has yet to be described in Gram-negative bacteria. Here we characterize a putative stressosome from the Gram-negative bacterium Vibrio brasiliensis. The sensor protein RsbR binds haem and exhibits ligand-dependent control of the stressosome complex activity. Oxygen binding to the haem decreases activity, while ferrous RsbR results in increased activity, suggesting that the V. brasiliensis stressosome may be activated when the bacterium enters anaerobic growth conditions. The findings provide a model system for investigating ligand-dependent signalling within stressosome complexes, as well as insights into potential pathways controlled by oxygen-dependent signalling within Vibrio species.


Asunto(s)
Oxígeno/metabolismo , Estrés Fisiológico , Vibrio/metabolismo , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Cinética , Ligandos , Modelos Biológicos , Modelos Moleculares , Tamaño de la Partícula , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...