Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phytopathology ; 109(7): 1280-1292, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30785376

RESUMEN

Cercospora leaf spot, caused by Cercospora beticola, is a highly destructive disease of Beta vulgaris subsp. vulgaris worldwide. C. beticola populations are usually characterized by high genetic diversity, but little is known of the relationships among populations from different production regions around the world. This information would be informative of population origin and potential pathways for pathogen movement. For the current study, the genetic diversity, differentiation, and relationships among 948 C. beticola isolates in 28 populations across eight geographic regions were investigated using 12 microsatellite markers. Genotypic diversity, as measured by Simpson's complement index, ranged from 0.18 to 1.00, while pairwise index of differentiation values ranged from 0.02 to 0.42, with the greatest differentiation detected between two New York populations. In these populations, evidence for recent expansion was detected. Assessment of population structure identified two major clusters: the first associated with New York, and the second with Canada, Chile, Eurasia, Hawaii, Michigan, North Dakota, and one population from New York. Inferences of gene flow among these regions suggested that the source for one cluster likely is Eurasia, whereas the source for the other cluster is not known. These results suggest a shared origin of C. beticola populations across regions, except for part of New York, where population divergence has occurred. These findings support the hypothesis that dispersal of C. beticola occurs over long distances.


Asunto(s)
Beta vulgaris , Enfermedades de las Plantas/microbiología , Beta vulgaris/microbiología , Canadá , Chile , Variación Genética , Hawaii , Michigan , New York , North Dakota
2.
Methods Mol Biol ; 835: 385-92, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22183666

RESUMEN

Fungicide resistance assays are useful to determine if a fungal pathogen has developed resistance to a fungicide used to manage the disease it causes. Laboratory assays are used to determine loss of sensitivity, or resistance, to a fungicide and can explain fungicide failures and for developing successful fungicide recommendations in the field. Laboratory assays for fungicide resistance are conducted by measuring reductions in growth or spore germination of fungi in the presence of fungicide, or by molecular procedures. This chapter describes two techniques for measuring fungicide resistance, using the sugarbeet leaf spot fungus Cercospora beticola as a model for the protocol. Two procedures are described for fungicides from two different classes; growth reduction for triazole (sterol demethylation inhibitor; DMI) fungicides, and inhibition of spore germination for quinone outside inhibitor (QoI) fungicides.


Asunto(s)
Ascomicetos/crecimiento & desarrollo , Fungicidas Industriales/metabolismo , Metacrilatos/metabolismo , Triazoles/metabolismo , Esporas Fúngicas/crecimiento & desarrollo
3.
Plant Dis ; 94(11): 1272-1282, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30743643

RESUMEN

Cercospora leaf spot, caused by the fungus Cercospora beticola Sacc., is the most serious and important foliar disease of sugar beet (Beta vulgaris L.) wherever it is grown worldwide. Cercospora leaf spot first caused economic damage in North Dakota and Minnesota in 1980, and the disease is now endemic. This is the largest production area for sugar beet in the United States, producing 5.5 to 6.0 million metric tons on approximately 300,000 ha, which is 56% of the sugar beet production in the United States. This Plant Disease feature article details a cooperative effort among the participants in the sugar beet industry in this growing area and represents a successful collaboration and team effort to confront and change a fungicide resistance crisis to a fungicide success program. As a case study of success for managing fungicide resistance, it will serve as an example to other pathogen-fungicide systems and provide inspiration and ideas for long-term disease management by fungicides.

4.
Phytopathology ; 97(7): 835-41, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18943932

RESUMEN

ABSTRACT Fusarium graminearum causes Fusarium head blight (FHB) in small grains worldwide. Although primarily a pathogen of cereals, it also can infect noncereal crops such as potato and sugar beet in the United States. We used a real-time polymerase chain reaction (PCR) method based on intergenic sequences specific to the trichodiene synthase gene (Tri5) from F. graminearum. TaqMan probe and primers were designed and used to estimate DNA content of the pathogen (FgDNA) in the susceptible wheat cv. Grandin after inoculation with the 21 isolates of F. graminearum collected from potato, sugar beet, and wheat. The presence of nine mycotoxins was analyzed in the inoculated wheat heads by gas chromatography and mass spectrometry. All isolates contained the Tri5 gene and were virulent to cv. Grandin. Isolates of F. graminearum differed significantly in virulence (expressed as disease severity), FgDNA content, and mycotoxin accumulation. Potato isolates showed greater variability in producing different mycotoxins than sugar beet and wheat isolates. Correlation analysis showed a significant (P < 0.001) positive relationship between FgDNA content and FHB severity or deoxynivalenol (DON) production. Moreover, a significant (P < 0.001) positive correlation between FHB severity and DON content was observed. Our findings revealed that F. graminearum causing potato dry rot and sugar beet decay could be potential sources of inoculum for FHB epidemics in wheat. Real-time PCR assay provides sensitive and accurate quantification of F. graminearum in wheat and can be useful for monitoring the colonization of wheat grains by F. graminearum in controlled environments, and evaluating wheat germplasms for resistance to FHB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA