Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37781874

RESUMEN

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Agua/análisis , Espectrometría de Masas , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
2.
Environ Sci Process Impacts ; 25(2): 190-213, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35634912

RESUMEN

Iron (Fe) is ubiquitous in nature and found as FeII or FeIII in minerals or as dissolved ions Fe2+ or Fe3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of FeIII into natural aquatic systems, organic carboxylic acids efficiently chelate FeIII to form [FeIII-carboxylate]2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of FeIII-carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of FeIII-citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of (φ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe3+-citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j1 ∼ 0.12 min-1 and j2 ∼ 0.05 min-1, respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe-organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe-carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of FeIII-citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments.


Asunto(s)
Ácido Cítrico , Compuestos Férricos , Ácido Cítrico/química , Compuestos Férricos/química , Cromatografía de Gases y Espectrometría de Masas , Citratos , Ácidos Carboxílicos/química , Agua/química , Oxidación-Reducción , Coloides , Oxígeno
3.
Nat Nanotechnol ; 17(11): 1171-1177, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36203091

RESUMEN

Nanoplastic particles are inadequately characterized environmental pollutants that have adverse effects on aquatic and atmospheric systems, causing detrimental effects to human health through inhalation, ingestion and skin penetration1-3. At present, it is explicitly assumed that environmental nanoplastics (EnvNPs) are weathering fragments of microplastic or larger plastic debris that have been discharged into terrestrial and aquatic environments, while atmospheric EnvNPs are attributed solely to aerosolization by wind and other mechanical forces. However, the sources and emissions of unintended EnvNPs are poorly understood and are therefore largely unaccounted for in various risk assessments4. Here we show that large quantities of EnvNPs may be directly emitted into the atmosphere as steam-laden waste components discharged from a technology commonly used to repair sewer pipes in urban areas. A comprehensive chemical analysis of the discharged waste condensate has revealed the abundant presence of insoluble colloids, which after drying form solid organic particles with a composition and viscosity consistent with EnvNPs. We suggest that airborne emissions of EnvNPs from these globally used sewer repair practices may be prevalent in highly populated urban areas5, and may have important implications for air quality and toxicological levels that need to be mitigated.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Plásticos/química , Atmósfera , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...