Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioeng Transl Med ; 8(6): e10592, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023728

RESUMEN

Diabetes is a known risk factor for various cardiovascular complications, mediated by endothelial dysfunction. Despite the high prevalence of this metabolic disorder, there is a lack of in vitro models that recapitulate the complexity of genetic and environmental factors associated with diabetic endothelial dysfunction. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to develop in vitro models of diabetic endothelial dysfunction. We found that the diabetic phenotype was recapitulated in diabetic patient-derived iPSC-ECs, even in the absence of a diabetogenic environment. Subsequent exposure to culture conditions that mimic the diabetic clinical chemistry induced a diabetic phenotype in healthy iPSC-ECs but did not affect the already dysfunctional diabetic iPSC-ECs. RNA-seq analysis revealed extensive transcriptome-wide differences between cells derived from healthy individuals and diabetic patients. The in vitro disease models were used as a screening platform which identified angiotensin receptor blockers (ARBs) that improved endothelial function in vitro for each patient. In summary, we present in vitro models of diabetic endothelial dysfunction using iPSC technology, taking into account the complexity of genetic and environmental factors in the metabolic disorder. Our study provides novel insights into the pathophysiology of diabetic endothelial dysfunction and highlights the potential of iPSC-based models for drug discovery and personalized medicine.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37861912

RESUMEN

Peripheral artery disease (PAD) is a prevalent cardiovascular disease with risks of limb loss. Our objective is to establish an autologous cell source for vascular regeneration to achieve limb salvage in PAD. Six PAD patients (age 50-80) were enrolled with their peripheral blood collected to derive vascular endothelial cells (ECs) with two different approaches: (1) endothelial progenitor cell (EPC) approach and (2) induced pluripotent stem cell (iPSC) approach. The iPSC approach successfully generated patient-specific ECs for all PAD patients, while the EPC approach did not yield any colony-forming ECs in any of the patients. The patient-derived iPSC-ECs expressed endothelial markers and exhibited endothelial functions. However, elevated inflammatory status with VCAM-1 expression was observed in the patient-derived cells. Pharmacological treatment with resveratrol resulted in patient-specific responses in cell viability and VCAM-1 expression. Our study demonstrates the potential of iPSC-ECs for autologous regenerative therapy in PAD, offering promise for personalized treatments for ischemic PAD. Our study establishes autologous endothelial cells from induced pluripotent stem cells as a cellular resource for regenerative treatments in peripheral artery disease.

3.
Nat Biomed Eng ; 7(11): 1514-1529, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37308586

RESUMEN

Topographical cues on cells can, through contact guidance, alter cellular plasticity and accelerate the regeneration of cultured tissue. Here we show how changes in the nuclear and cellular morphologies of human mesenchymal stromal cells induced by micropillar patterns via contact guidance influence the conformation of the cells' chromatin and their osteogenic differentiation in vitro and in vivo. The micropillars impacted nuclear architecture, lamin A/C multimerization and 3D chromatin conformation, and the ensuing transcriptional reprogramming enhanced the cells' responsiveness to osteogenic differentiation factors and decreased their plasticity and off-target differentiation. In mice with critical-size cranial defects, implants with micropillar patterns inducing nuclear constriction altered the cells' chromatin conformation and enhanced bone regeneration without the need for exogenous signalling molecules. Our findings suggest that medical device topographies could be designed to facilitate bone regeneration via chromatin reprogramming.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Ratones , Humanos , Animales , Cromatina , Constricción , Regeneración Ósea
4.
Stem Cells Dev ; 24(21): 2577-90, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26230358

RESUMEN

Cellular adhesion enables communication between cells and their environment. Adhesion can be achieved throughout focal adhesions and its components influence osteoblast differentiation of human mesenchymal stem cells (hMSCs). Because cell adhesion and osteoblast differentiation are closely related, this article aimed to analyze the expression profiles of adhesion-related proteins during osteoblastic differentiation of two hMSCs subpopulations (CD105(+) and CD105(-)) and propose a strategy for assembling bone grafts based on its adhesion ability. In vitro experiments of osteogenic differentiation in CD105(-) cells showed superior adhesion efficiency and 2-fold increase of α-actinin expression compared with CD105(+) cells at the maturation stage. Interestingly, levels of activated ß1-integrin increased in CD105(-) cells during the process. Additionally, the CD105(-) subpopulation showed 3-fold increase of phosphorylated FAK(Y397) compared to CD105(+) cells. Results also indicate that ERK1/2 was activated during CD105(-) bone differentiation and participation of mitogen-activated protein kinase (MAPK)-p38 in CD105(+) differentiation through a focal adhesion kinase (FAK)-independent pathway. In vivo trial demonstrated that grafts containing CD105(-) showed osteocytes embedded in a mineralized matrix, promoted adequate graft integration, increased host vascular infiltration, and efficient intramembranous repairing. In contrast, grafts containing CD105(+) showed deficient endochondral ossification and fibrocartilaginous tissue. Based on the expression of α-actinin, FAKy,(397) and ERK1/2 activation, we define maturation stage as critical for bone graft assembling. By in vitro assays, CD105(-) subpopulation showed superior adhesion efficiency compared to CD105(+) cells. Considering in vitro and in vivo assays, this study suggests that integration of a scaffold with CD105(-) subpopulation at the maturation stage represents an attractive strategy for clinical use in orthopedic bioengineering.


Asunto(s)
Diferenciación Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis/fisiología , Adhesión Celular/fisiología , Células Cultivadas , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Fosforilación , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...