Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 884029, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35734246

RESUMEN

The binding of the plant phytohormone Abscisic acid (ABA) to the family of ABA receptors (PYR/PYL/RCAR) triggers plant responses to abiotic stress. Thus, the implementation of genetic or chemical strategies to modulate PYR/PYL activity might be biotechnologically relevant. We have employed the available structural information on the PYR/PYL receptors to design SlPYL1, a tomato receptor, harboring a single point mutation that displays enhanced ABA dependent and independent activity. Interestingly, crystallographic studies show that this mutation is not directly involved in ABA recognition or in the downstream phosphatase (PP2C) inhibitory interaction, rather, molecular dynamic based ensemble refinement restrained by crystallographic data indicates that it enhances the conformational variability required for receptor activation and it is involved in the stabilization of an active form of the receptor. Moreover, structural studies on this receptor have led to the identification of niacin as an ABA antagonist molecule in vivo. We have found that niacin blocks the ABA binding site by mimicking ABA receptor interactions, and the niacin interaction inhibits the biochemical activity of the receptor.

2.
Cells ; 11(5)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35269417

RESUMEN

To face the challenges of climate change and sustainable food production, it is essential to develop crop genome editing techniques to pinpoint key genes involved in abiotic stress signaling. The identification of those prevailing abscisic acid (ABA) receptors that mediate plant-environment interactions is quite challenging in polyploid plants because of the high number of genes in the PYR/PYL/RCAR ABA receptor family. Nicotiana benthamiana is a biotechnological crop amenable to genome editing, and given the importance of ABA signaling in coping with drought stress, we initiated the analysis of its 23-member family of ABA receptors through multiplex CRISPR/Cas9-mediated editing. We generated several high-order mutants impaired in NbPYL1-like and NbPYL8-like receptors, which showed certain insensitivity to ABA for inhibition of seedling establishment, growth, and development of shoot and lateral roots as well as reduced sensitivity to the PYL1-agonist cyanabactin (CB). However, in these high-order mutants, regulation of transpiration was not affected and was responsive to ABA treatment. This reveals a robust and redundant control of transpiration in this allotetraploid plant that probably reflects its origin from the extreme habitat of central Australia.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Regulación de la Expresión Génica de las Plantas , Semillas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...