Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 12(7): 1806-1816, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29535364

RESUMEN

Global trade increases plant introductions, but joint introduction of associated microbes is overlooked. We analyzed the ectomycorrhizal fungi of a Caribbean beach tree, seagrape (Coccoloba uvifera, Polygonacaeae), introduced pantropically to stabilize coastal soils and produce edible fruits. Seagrape displays a limited symbiont diversity in the Caribbean. In five regions of introduction (Brazil, Japan, Malaysia, Réunion and Senegal), molecular barcoding showed that seagrape mostly or exclusively associates with Scleroderma species (Basidiomycota) that were hitherto only known from Caribbean seagrape stands. An unknown Scleroderma species dominates in Brazil, Japan and Malaysia, while Scleroderma bermudense exclusively occurs in Réunion and Senegal. Population genetics analysis of S. bermudense did not detect any demographic bottleneck associated with a possible founder effect, but fungal populations from regions where seagrape is introduced are little differentiated from the Caribbean ones, separated by thousands of kilometers, consistently with relatively recent introduction. Moreover, dry seagrape fruits carry Scleroderma spores, probably because, when drying on beach sand, they aggregate spores from the spore bank accumulated by semi-hypogeous Scleroderma sporocarps. Aggregated spores inoculate seedlings, and their abundance may limit the founder effect after seagrape introduction. This rare pseudo-vertical transmission of mycorrhizal fungi likely contributed to efficient and repeated seagrape/Scleroderma co-introductions.


Asunto(s)
Basidiomycota/fisiología , Micorrizas/fisiología , Polygonaceae/microbiología , Simbiosis , Árboles/microbiología , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Brasil , Región del Caribe , Japón , Micorrizas/genética , Micorrizas/crecimiento & desarrollo , Micorrizas/aislamiento & purificación , Plantones/microbiología , Plantones/fisiología , Suelo , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/aislamiento & purificación , Esporas Fúngicas/fisiología , Árboles/fisiología
2.
Ecol Evol ; 5(16): 3486-99, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26380680

RESUMEN

Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life-history traits on diversification of unrelated but co-distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present-day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life-history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid-Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life-history traits of mangrove species, which should have had a strong influence on seed dispersal capability and, thus, population connectivity, we found that vicariant events, climate fluctuations and marine currents have shaped the distribution of genetic diversity in strikingly similar ways.

3.
Am J Bot ; 97(6): 945-57, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21622465

RESUMEN

PREMISE OF THE STUDY: Hybridization is common in both animals and plants and can lead to a diverse array of outcomes ranging from the generation of new ecotypes or species to the breakdown of morphological differences. Here, we explore the extent of hybridization in the three currently recognized New World Rhizophora species-R. mangle, R. racemosa, and the putative hybrid species R. harrisonii. • METHODS: We assayed variation across the three recognized Rhizophora species using two noncoding chloroplast (cpDNA), two flanking microsatellite regions (FMRs), and six microsatellite loci. • KEY RESULTS: Gene genealogies of cpDNA and FMRs showed a strong phylogeographic break across the Central American Isthmus, but little relationship to recognized species boundaries. Instead, individuals collected in the same ocean basin and classified as R. mangle and R. racemosa by morphological characteristics were more closely related to each other than with similar looking individuals collected in the other ocean basin. Nonetheless, there were low, yet significant differences at microsatellite loci among co-occurring populations of R. mangle and R. racemosa in both ocean basins, suggesting that two taxonomic groups coexist. However, we found no genetic evidence that R. harrisonii was a hybrid species. Rather, R. harrisonii appears to represent a morphotype produced by ongoing hybridization and backcrossing between R. mangle and R. racemosa. • CONCLUSIONS: Our data support ancient and persistent introgressive hybridization among new world Rhizophora and argue for a full revision of the systematic relationships of the group based on much finer morphological, ecological, and genetic analyses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...