Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ecol Appl ; 33(5): e2855, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37040202

RESUMEN

Despite widespread concerns about the anthropogenic drivers of global pollinator declines, little information is available about the impacts of land management practices on wild bees outside of agricultural systems, including in forests managed intensively for wood production. We assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas-fir (Pseudotsuga menziesii) stands across a gradient in stand ages spanning a typical harvest rotation. We measured bee abundance, species richness, and alpha and beta diversity, as well as habitat characteristics (i.e., floral resources, nesting substrates, understory vegetation, and early seral forest in the surrounding landscape) during the spring and summer of 2018 and 2019. We found that bee abundance and species richness declined rapidly with stand age, decreasing by 61% and 48%, respectively, for every 5 years since timber harvest. Asymptotic estimates of Shannon and Simpson diversity were highest in stands 6-10 years post-harvest and lowest after the forest canopy had closed, ~11 years post-harvest. Bee communities in older stands were nested subsets of bee communities found in younger stands, indicating that changes were due to species loss rather than turnover as the stands aged. Bee abundance-but not species richness-was positively associated with floral resource density, and neither metric was associated with floral richness. The amount of early seral forest in the surrounding landscape seemed to enhance bee species richness in older, closed-canopy stands, but otherwise had little effect. Changes in the relative abundance of bee species did not relate to bee functional characteristics such as sociality, diet breadth, or nesting substrate. Our study demonstrates that Douglas-fir plantations develop diverse communities of wild bees shortly after harvest, but those communities erode rapidly over time as forest canopies close. Therefore, stand-scale management activities that prolong the precanopy closure period and enhance floral resources during the initial stage of stand regeneration will provide the greatest opportunity to enhance bee diversity in landscapes dominated by intensively managed conifer forests.


Asunto(s)
Tracheophyta , Abejas , Animales , Biodiversidad , Bosques , Ecosistema , Madera
3.
Conserv Biol ; 37(5): e14091, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37021393

RESUMEN

Understanding how habitat fragmentation affects individual species is complicated by challenges associated with quantifying species-specific habitat and spatial variability in fragmentation effects within a species' range. We aggregated a 29-year breeding survey data set for the endangered marbled murrelet (Brachyramphus marmoratus) from >42,000 forest sites throughout the Pacific Northwest (Oregon, Washington, and northern California) of the United States. We built a species distribution model (SDM) in which occupied sites were linked with Landsat imagery to quantify murrelet-specific habitat and then used occupancy models to test the hypotheses that fragmentation negatively affects murrelet breeding distribution and that these effects are amplified with distance from the marine foraging habitat toward the edge of the species' nesting range. Murrelet habitat declined in the Pacific Northwest by 20% since 1988, whereas the proportion of habitat comprising edges increased by 17%, indicating increased fragmentation. Furthermore, fragmentation of murrelet habitat at landscape scales (within 2 km of survey stations) negatively affected occupancy of potential breeding sites, and these effects were amplified near the range edge. On the coast, the odds of occupancy decreased by 37% (95% confidence interval [CI] -54 to 12) for each 10% increase in edge habitat (i.e., fragmentation), but at the range edge (88 km inland) these odds decreased by 99% (95% CI 98 to 99). Conversely, odds of murrelet occupancy increased by 31% (95% CI 14 to 52) for each 10% increase in local edge habitat (within 100 m of survey stations). Avoidance of fragmentation at broad scales but use of locally fragmented habitat with reduced quality may help explain the lack of murrelet population recovery. Further, our results emphasize that fragmentation effects can be nuanced, scale dependent, and geographically variable. Awareness of these nuances is critical for developing landscape-level conservation strategies for species experiencing broad-scale habitat loss and fragmentation.


Efectos de la fragmentación sobre las especies en peligro a lo largo de un gradiente desde el interior hasta el borde de su distribución Resumen Es complicado entender el efecto de la fragmentación del hábitat sobre las especies individuales debido a los retos asociados con la cuantificación de hábitats específicos por especie y la variabilidad espacial de los efectos de la fragmentación dentro de la distribución de la especie. Combinamos los datos de un censo reproductivo realizado durante 29 años para el mérgulo jaspeado (Brachyramphus marmoratus) de >42,000 sitios boscosos a lo largo del noroeste del Pacífico (Oregón, Washington, y el norte de California, EE. UU.). Construimos un modelo de distribución de especie (MDE) en el cual los sitios ocupados estuvieron vinculados con imágenes de Landsat para cuantificar el hábitat específico del mérgulo y después usamos los modelos de ocupación para comprobar la hipótesis de que la fragmentación afecta negativamente la distribución reproductiva de la especie y que estos efectos se amplifican con la distancia entre el hábitat de forrajeo marino y el borde de la distribución de anidación de la especie. El hábitat del mérgulo declinó en la zona en un 20% a partir de 1988, mientras que la proporción de hábitat que comprende bordes incrementó en un 17%, lo que indica un aumento en la fragmentación. Además, la fragmentación del hábitat del mérgulo a escala de paisaje (a de 2 km de las estaciones de censo) afectó negativamente a la ocupación de sitios potenciales de reproducción y estos efectos se amplificaron cerca del borde de la distribución. La probabilidad de ocupación disminuyó en un 37% (95% IC -54 a 12) por cada 10% de incremento en el hábitat de borde (es decir, fragmentación) en la costa, pero en el borde de la distribución (88 km tierra adentro), esta probabilidad disminuyó en un 99% (95% IC 98 a 99). De forma contraria, la probabilidad de ocupación incrementó en un 31% (95% IC 14 a 52) por cada 10% de incremento en el hábitat de borde local (a 100 m de las estaciones de censo). La evasión de la fragmentación a gran escala y el uso de hábitats con calidad reducida y fragmentados a nivel local podría explicar la falta de recuperación poblacional del mérgulo. Más allá, nuestros resultados resaltan que los efectos de la fragmentación pueden estar matizados, depender de la escala y tener variación geográfica. Es importante tener conciencia de estos matices para desarrollar estrategias de conservación a nivel paisaje para las especies que experimentan fragmentación y pérdida del hábitat a gran escala.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Animales , Ecosistema , Bosques , Washingtón
4.
Biol Rev Camb Philos Soc ; 98(4): 1118-1141, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36879466

RESUMEN

Although the importance of natural habitats to pollinator diversity is widely recognized, the value of forests to pollinating insects has been largely overlooked in many parts of the world. In this review, we (i) establish the importance of forests to global pollinator diversity, (ii) explore the relationship between forest cover and pollinator diversity in mixed-use landscapes, and (iii) highlight the contributions of forest-associated pollinators to pollination in adjacent crops. The literature shows unambiguously that native forests support a large number of forest-dependent species and are thus critically important to global pollinator diversity. Many pollinator taxa require or benefit greatly from resources that are restricted to forests, such as floral resources provided by forest plants (including wind-pollinated trees), dead wood for nesting, tree resins, and various non-floral sugar sources (e.g. honeydew). Although landscape-scale studies generally support the conclusion that forests enhance pollinator diversity, findings are often complicated by spatial scale, focal taxa, landscape context, temporal context, forest type, disturbance history, and external stressors. While some forest loss can be beneficial to pollinators by enhancing habitat complementarity, too much can result in the near-elimination of forest-associated species. There is strong evidence from studies of multiple crop types that forest cover can substantially increase yields in adjacent habitats, at least within the foraging ranges of the pollinators involved. The literature also suggests that forests may have enhanced importance to pollinators in the future given their role in mitigating the negative effects of pesticides and climate change. Many questions remain about the amount and configuration of forest cover required to promote the diversity of forest-associated pollinators and their services within forests and in neighbouring habitats. However, it is clear from the current body of knowledge that any effort to preserve native woody habitats, including the protection of individual trees, will benefit pollinating insects and help maintain the critical services they provide.


Asunto(s)
Bosques , Polinización , Animales , Abejas , Ecosistema , Productos Agrícolas , Insectos , Árboles
6.
Ecol Evol ; 11(17): 11700-11717, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34522334

RESUMEN

Ecological, environmental, and geographic factors all influence genetic structure. Species with broad distributions are ideal systems because they cover a range of ecological and environmental conditions allowing us to test which components predict genetic structure. This study presents a novel, broad geographic approach using molecular markers, morphology, and habitat modeling to investigate rangewide and local barriers causing contemporary genetic differentiation within the geographical range of three white-crowned sparrow (Zonotrichia leucophrys) subspecies: Z. l. gambelii, Z. l. oriantha, and Z. l. pugetensis. Three types of genetic markers showed geographic distance between sampling sites, elevation, and ecosystem type are key factors contributing to population genetic structure. Microsatellite markers revealed white-crowned sparrows do not group by subspecies, but instead indicated four groupings at a rangewide scale and two groupings based on coniferous and deciduous ecosystems at a local scale. Our analyses of morphological variation also revealed habitat differences; sparrows from deciduous ecosystems are larger than individuals from coniferous ecosystems based on principal component analyses. Habitat modeling showed isolation by distance was prevalent in describing genetic structure, but isolation by resistance also had a small but significant influence. Not only do these findings have implications concerning the accuracy of subspecies delineations, they also highlight the critical role of local factors such as habitat in shaping contemporary population genetic structure of species with high dispersal ability.

7.
Ecol Appl ; 31(8): e02441, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34374167

RESUMEN

Understanding how land-management intensification shapes the relationships between biodiversity, yield, and economic benefit is critical for managing natural resources. Yet, manipulative experiments that test how herbicides affect these relationships are scarce, particularly in forest ecosystems where considerable time lags exist between harvest revenue and initial investments. We assessed these relationships by combining 7 yr of biodiversity surveys (>800 taxa) and forecasts of timber yield and economic return from a replicated, large-scale experiment that manipulated herbicide application intensity in operational timber plantations. Herbicides reduced species richness across trophic groups (-18%), but responses by higher-level trophic groups were more variable (0-38% reduction) than plant responses (-40%). Financial discounting, a conventional economic method to standardize past and future cash flows, strongly modified biodiversity-revenue relationships caused by management intensity. Despite a projected 28% timber yield gain with herbicides, biodiversity-revenue trade-offs were muted when opportunity costs were high (i.e., economic discount rates ≥7%). Although herbicides can drive biodiversity-yield trade-offs, under certain conditions, financial discounting provides opportunities to reconcile biodiversity conservation with revenue.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Biodiversidad , Ecosistema , Bosques
8.
Oecologia ; 195(1): 65-75, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33392790

RESUMEN

Although ecological disturbances can have a strong influence on pollinators through changes in habitat, virtually no studies have quantified how characteristics of wildfire influence the demography of essential pollinators. Nevertheless, evaluating this topic is critical for understanding how wildfire is linked to pollinator population dynamics, particularly given recent changes in wildfire frequency and severity in many regions of the world. In this study, we measured the demographic response of the blue orchard bee (Osmia lignaria) across a natural gradient of wildfire severity to assess how variation in wildfire characteristics influenced reproductive output, offspring sex ratio, and offspring mass. We placed nest blocks with a standardized number and sex ratio of pre-emergent adult bees across the wildfire gradient, finding some evidence for a positive but highly variable relationship between reproductive output and fire severity surrounding the nest site at both local (100 m) and landscape (750 m) scales. In addition, the production of female offspring was > 10% greater at nest sites experiencing the greatest landscape-scale fire severity relative to the lowest-severity areas. The finding that blue orchard bees biased offspring production towards the more expensive offspring sex with increasing fire severity shows a functional response to changes in habitat quality through increased density of flowering plants. Our findings indicate that burned mixed-conifer forest provides forage for the blue orchard bee across a severity gradient, and that the increase in floral resources that follows high-severity fire leads females to shift resource allocation to the more costly sex when nesting.


Asunto(s)
Incendios , Incendios Forestales , Animales , Abejas , Ecosistema , Femenino , Reproducción , Razón de Masculinidad
9.
Ecol Evol ; 9(5): 2535-2549, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30891198

RESUMEN

Purposeful provisioning of food to wild animals is a widespread and growing activity that has the potential to impact populations and communities. Nevertheless, studies assessing use of recreational feeders by free-living birds during winter are surprisingly rare and largely limited to regions with continental climates characterized by freezing temperatures and snow cover. In contrast, there is little information available regarding bird use of feeders within warmer climates during winter, despite widespread recreational feeding in these areas. In this study, we quantified visitation patterns to bird feeders in a Mediterranean climate to evaluate the relationship between feeder use and several environmental variables known to influence supplemental feeder use in continental climates. We established a network of bird feeders in Corvallis, Oregon, USA, that were filled with black oil sunflower (Helianthus annuus) seeds and equipped with radio frequency identification (RFID) data loggers that recorded >315,000 visits by 70 individual Black-capped Chickadees (Poecile atricapillus) across a 5-month period (October 2016-March 2017). We found extensive variation in feeder use, with individuals averaging 1-406 feeder visits/day and using 1-9 of the 21 feeders that were available; individual variability was largely consistent during the course of our study. At the population level, we found that feeder use decreased from the start of our study, and this decline continued through the period when foraging was most limited by daylight, including the winter solstice. In contrast to theoretical predictions and empirical work in continental climates, we found that weather variables did not drive feeder use and that feeder visits peaked at mid-day and gradually decreased until sunset. Our study indicates that individual-level differences combined with seasonality to drive feeder use patterns, and we conclude that use of supplemental feeders during winter in Mediterranean climates appears to differ notably from feeder use in continental climates.

10.
Glob Chang Biol ; 25(5): 1561-1575, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30810257

RESUMEN

Climate and land-use changes are expected to be the primary drivers of future global biodiversity loss. Although theory suggests that these factors impact species synergistically, past studies have either focused on only one in isolation or have substituted space for time, which often results in confounding between drivers. Tests of synergistic effects require congruent time series on animal populations, climate change and land-use change replicated across landscapes that span the gradient of correlations between the drivers of change. Using a unique time series of high-resolution climate (measured as temperature and precipitation) and land-use change (measured as forest change) data, we show that these drivers of global change act synergistically to influence forest bird population declines over 29 years in the Pacific Northwest of the United States. Nearly half of the species examined had declined over this time. Populations declined most in response to loss of early seral and mature forest, with responses to loss of early seral forest amplified in landscapes that had warmed over time. In addition, birds declined more in response to loss of mature forest in areas that had dried over time. Climate change did not appear to impact populations in landscapes with limited habitat loss, except when those landscapes were initially warmer than the average landscape. Our results provide some of the first empirical evidence of synergistic effects of climate and land-use change on animal population dynamics, suggesting accelerated loss of biodiversity in areas under pressure from multiple global change drivers. Furthermore, our findings suggest strong spatial variability in the impacts of climate change and highlight the need for future studies to evaluate multiple drivers simultaneously to avoid potential misattribution of effects.


Asunto(s)
Biodiversidad , Aves/fisiología , Cambio Climático , Animales , Bosques , Humanos , Noroeste de Estados Unidos , Dinámica Poblacional
11.
Conserv Physiol ; 5(1): cox054, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959450

RESUMEN

Many species that use or require early-successional forest are of conservation concern, including a number of songbirds that have experienced long-term population declines. In this study, our initial goal was to test whether herbicide application intensity was linked to offspring sex ratio in the White-crowned Sparrow (Zonotrichia leucophrys), a species that requires early-successional forest within forested landscapes. However, a rapid and accurate method using direct PCR to sex a large sample of birds (n > 1000 individuals) was unavailable, so our secondary goal was to develop a new approach for rapidly determine offspring sex. We obtained blood samples from sparrow young during the 2013-2014 breeding seasons in regenerating conifer plantations that were treated with one of four treatments (i.e. light, moderate, and intensive herbicide application, or no-spray control). We then optimized a protocol that used a commercially available, direct PCR kit to amplify sex-specific fragments of the CHD (chromo-helicase-DNA-binding) genes directly from whole blood stored in lysis buffer. Using this approach, we found no evidence that offspring sex ratio was linked to herbicide application intensity or to food availability across herbicide treatments. Our molecular sexing technique was 100% accurate when validated on known-sex adults, and 99.9% of our blood samples amplified successfully after being stored in lysis buffer stored for up to 3 years. The application of direct PCR for sexing birds eliminated the need for DNA extraction and substantially reduced sample processing time, cost, and the opportunity for errors during the extraction step. We conclude that forest herbicide application intensity does not influence sparrow offspring sex ratio in our study system, and that our approach provides a rapid, accurate, and tractable method for sexing birds that can facilitate studies that require processing of a large number of samples.

12.
Dev Neurobiol ; 76(6): 615-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26335154

RESUMEN

Vocalizations produced by developing young early in life have simple acoustic features and are thought to be innate. Complex forms of early vocal learning are less likely to evolve in young altricial songbirds because the forebrain vocal-learning circuit is underdeveloped during the period when early vocalizations are produced. However, selective pressure experienced in early postnatal life may lead to early vocal learning that is likely controlled by a simpler brain circuit. We found the food begging calls produced by fledglings of the brown-headed cowbird (Molothrus ater), a generalist avian brood parasite, induced the expression of several immediate early genes and early circuit innervation in a forebrain vocal-motor pathway that is later used for vocal imitation. The forebrain neural activity was correlated with vocal intensity and variability of begging calls that appears to allow cowbirds to vocally match host nestmates. The begging-induced forebrain circuits we observed in fledgling cowbirds were not detected in nonparasitic passerines, including species that are close relatives to the cowbird. The involvement of forebrain vocal circuits during fledgling begging and its association with vocal learning plasticity may be an adaptation that provides young generalist brood parasites with a flexible signaling strategy to procure food from a wide range of heterospecific host parents.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/fisiología , Prosencéfalo/citología , Vocalización Animal/fisiología , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Alimentaria , Cuidados en el Hogar de Adopción , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Vías Nerviosas/fisiología , ARN Mensajero , Pájaros Cantores
13.
Conserv Biol ; 28(6): 1721-30, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25040286

RESUMEN

Large-scale poisoning events are common to scavenging bird species that forage communally, many of which are in decline. To reduce the threat of poisoning and compensate for other persistent threats, management, including supplemental feeding, is ongoing for many reintroduced and endangered vulture populations. Through a longitudinal study of lead exposure in California condors (Gymnogyps californianus), we illustrate the conservation challenges inherent in reintroduction of an endangered species to the wild when pervasive threats have not been eliminated. We evaluated population-wide patterns in blood lead levels from 1997 to 2011 and assessed a broad range of putative demographic, behavioral, and environmental risk factors for elevated lead exposure among reintroduced California condors in California (United States). We also assessed the effectiveness of lead ammunition regulations within the condor's range in California by comparing condor blood lead levels before and after implementation of the regulations. Lead exposure was a pervasive threat to California condors despite recent regulations limiting lead ammunition use. In addition, condor lead levels significantly increased as age and independence from intensive management increased, including increasing time spent away from managed release sites, and decreasing reliance on food provisions. Greater independence among an increasing number of reintroduced condors has therefore elevated the population's risk of lead exposure and limited the effectiveness of lead reduction efforts to date. Our findings highlight the challenges of restoring endangered vulture populations as they mature and become less reliant on management actions necessary to compensate for persistent threats.


Asunto(s)
Conservación de los Recursos Naturales , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Falconiformes/metabolismo , Plomo/toxicidad , Animales , California , Especies en Peligro de Extinción , Monitoreo del Ambiente , Estudios Longitudinales , Factores de Riesgo
14.
PLoS One ; 9(2): e88430, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523893

RESUMEN

Condors and vultures are distinct from most other terrestrial birds because they use extensive soaring flight for their daily movements. Therefore, assessing resource selection by these avian scavengers requires quantifying the availability of terrestrial-based habitats, as well as meteorological variables that influence atmospheric conditions necessary for soaring. In this study, we undertook the first quantitative assessment of habitat- and meteorological-based resource selection in the endangered California condor (Gymnogyps californianus) within its California range and across the annual cycle. We found that condor use of terrestrial areas did not change markedly within the annual cycle, and that condor use was greatest for habitats where food resources and potential predators could be detected and where terrain was amenable for taking off from the ground in flight (e.g., sparse habitats, coastal areas). Condors originating from different release sites differed in their use of habitat, but this was likely due in part to variation in habitats surrounding release sites. Meteorological conditions were linked to condor use of ecological subregions, with thermal height, thermal velocity, and wind speed having both positive (selection) and negative (avoidance) effects on condor use in different areas. We found little evidence of systematic effects between individual characteristics (i.e., sex, age, breeding status) or components of the species management program (i.e., release site, rearing method) relative to meteorological conditions. Our findings indicate that habitat type and meteorological conditions can interact in complex ways to influence condor resource selection across landscapes, which is noteworthy given the extent of anthropogenic stressors that may impact condor populations (e.g., lead poisoning, wind energy development). Additional studies will be valuable to assess small-scale condor movements in light of these stressors to help minimize their risk to this critically endangered species.


Asunto(s)
Conducta Animal , Ecosistema , Rapaces/fisiología , Animales , California , Especies en Peligro de Extinción , Femenino , Sistemas de Información Geográfica , Geografía , Masculino , Tiempo (Meteorología)
15.
Ecotoxicology ; 20(6): 1467-75, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21660600

RESUMEN

To examine regional variation in strontium (Sr), which at high concentrations may reduce eggshell quality, increase egg breakage and reproductive failure, we analyzed Sr, and calcium (Ca) concentrations and Sr/Ca ratios in eggshells from 20 avian species from California, Texas, Idaho, Kansas, and Michigan. In addition, we included data previously reported from Arizona to expand the regional comparisons and to better establish patterns of Sr, and Sr/Ca ratios in bird species across the United States. We found Sr concentrations varied significantly among regions, among species, and among foraging guilds; this variability is strongly influenced by the Sr/Ca ratios in surface water from locations close to the region where the eggshells were collected. Sr concentrations and Sr/Ca ratios were significantly higher in bird eggshells from the Volta wildlife region in the San Joaquin Valley, California and in various locales from Arizona. Sr concentrations and Sr/Ca ratios in bird eggshells from other locations in the USA were lower than those detected in these two regions. Among foraging guilds, invertivores had the highest Sr concentrations and Sr/Ca ratios and carnivores had the lowest. In general, the Sr/Ca ratio increased strongly with increasing Sr concentrations (R(2) = 0.99, P < 0.0001). There was a significant correlation (R(2) = 0.58, P < 0.0001) between Sr/Ca ratios in water and the average Sr/Ca ratios in eggshells suggesting that these values could be determined from Sr/Ca ratios in water. Eggshell thickness was poorly correlated with Sr (R(2) = 0.03) but had a significant and positive correlation with Ca and was more properly correlated by a quadratic equation (R(2) = 0.50, Thickness = 2.13 - 0.02Ca - 3.07 * 10(-5)Ca(2)). Our study provides further evidence that Sr accumulates significantly in the avian eggshell, in some regions at concentrations which could be of concern for potential negative effects on reproduction. We suggest that when assessing the effects of metals on avian reproduction in regions with high Sr deposits in rock and soil, Sr concentrations in the eggshell also should be measured to evaluate additional effects on thickness and reproduction.


Asunto(s)
Aves , Calcio/análisis , Óvulo/química , Estroncio/análisis , Oligoelementos/análisis , Animales , Monitoreo del Ambiente , Estados Unidos
16.
Reproduction ; 141(5): 595-605, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21307271

RESUMEN

The outcome of sperm competition (i.e. competition for fertilization between ejaculates from different males) is primarily determined by the relative number and quality of rival sperm. Therefore, the testes are under strong selection to maximize both sperm number and quality, which are likely to result in trade-offs in the process of spermatogenesis (e.g. between the rate of spermatogenesis and sperm length or sperm energetics). Comparative studies have shown positive associations between the level of sperm competition and both relative testis size and the proportion of seminiferous (sperm-producing) tissue within the testes. However, it is unknown how the seminiferous tissue itself or the process of spermatogenesis might evolve in response to sperm competition. Therefore, we quantified the different germ cell types and Sertoli cells (SC) in testes to assess the efficiency of sperm production and its associations with sperm length and mating system across 10 species of New World Blackbirds (Icteridae) that show marked variation in sperm length and sperm competition level. We found that species under strong sperm competition generate more round spermatids (RS)/spermatogonium and have SC that support a greater number of germ cells, both of which are likely to increase the maximum sperm output. However, fewer of the RS appeared to elongate to mature spermatozoa in these species, which might be the result of selection for discarding spermatids with undesirable characteristics as they develop. Our results suggest that, in addition to overall size and gross morphology, testes have also evolved functional adaptations to maximize sperm quantity and quality.


Asunto(s)
Fertilización , Passeriformes/fisiología , Espermatogénesis , Espermatozoides/fisiología , Testículo/fisiología , Adaptación Fisiológica , Animales , Forma de la Célula , Tamaño de la Célula , Masculino , Especificidad de la Especie , Recuento de Espermatozoides , Testículo/citología
17.
Environ Manage ; 45(2): 203-16, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20084512

RESUMEN

Military training activities are known to impact individual species, yet our understanding of how such activities influence animal communities is limited. In this study, we used long-term data in a case study approach to examine the extent to which the local small landbird community differed between a site in northeast Kansas that experienced intensive disturbance from military training activities (Ft. Riley Military Installation) and a similar, nearby site that experienced minimal human disturbance (Konza Prairie Biological Station). In addition, we characterized how the regional pool of potential colonizers influenced local community dynamics using Breeding Bird Survey data. From 1991 to 2001, most species of small terrestrial landbirds (73%) recorded during breeding surveys were found at both sites and the mean annual richness at Ft. Riley (39.0 +/- 2.86 [SD]) was very similar to that of Konza Prairie (39.4 +/- 2.01). Richness was maintained at relatively constant levels despite compositional changes because colonizations compensated local extinctions at both sites. These dynamics were driven primarily by woodland species that exhibited stochastic losses and gains and were present at a low local and regional abundance. Our results suggest that military training activities may mimic natural disturbances for some species in this area because the small landbird community did not differ markedly between sites with and sites without extensive human disturbance. Although our results suggest that military training is not associated with large changes in the avian community, additional studies are needed to determine if this pattern is found in other ecological communities.


Asunto(s)
Biodiversidad , Aves , Conservación de los Recursos Naturales , Ciencia Militar , Animales , Humanos , Kansas , Personal Militar , Dinámica Poblacional
18.
Evolution ; 63(2): 391-402, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19215291

RESUMEN

Sperm morphology varies considerably across taxa, and postcopulatory sexual selection is thought to be one of the main forces responsible for this diversity. Several studies have investigated the effects of the variation in sperm design on sperm function, but the consequences of variation in sperm design on testis morphology have been overlooked. Testes size or architecture may determine the size of the sperm they produce, and selection for longer sperm may require concomitant adaptations in the testes. Relative testes size differs greatly between species and is often used as an index of sperm competition, but little is known about whether larger testes have more sperm-producing tissue or produce sperm at a faster rate. Using a comparative approach in New World Blackbirds (Icteridae), we found (1) a strong link between testis histology and sperm length, suggesting selection on testis architecture through selection on sperm size, and (2) that species under intense sperm competition had a greater proportion of sperm-producing tissue within their testes. These results support the prediction that sperm competition fosters adaptations in reproductive organs that extend beyond testes size, and raise questions about the trade-offs influencing reproductive investment.


Asunto(s)
Passeriformes/fisiología , Espermatozoides/fisiología , Testículo/anatomía & histología , Testículo/fisiología , Animales , Masculino , Tamaño de los Órganos , Passeriformes/anatomía & histología
19.
Environ Manage ; 34(6): 887-902, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15696298

RESUMEN

Military installations provide important native habitat for songbirds, including many species that have experienced population declines in recent decades. As part of the Land Condition Trend Analysis (LCTA) program to monitor animal populations on military lands, we surveyed small (<250 g) breeding landbirds on 60 permanent plots on the Fort Riley Military Installation in northeastern Kansas from 1991 to 2002. During this period, species richness averaged 39.0 species (SE 0.9)/year and mean species richness per plot ranged from 3.6 species (SE = 0.2)/plot (1999) to 7.5 species (SE = 0.3)/plot (1992). Turnover (the appearance and disappearance of species on all plots from one year to the next) ranged from 5 species (2000-2001) to 16 species (1992-1993) and was driven primarily by turnover of woodland species. We developed an index of relative difference (C) to evaluate relative trends of local populations and found that 25 species declined, 15 species increased, and 7 did not change. Based on migration assemblages, more resident species (6 of 10) and more short-distant migrants (9 of 12) decreased than long-distance migrants (10 vs. 11). Our analysis of major vegetation communities on plots showed few changes in the quantity of habitats (grassland vs. woodlands) during the study. Our results indicate that Fort Riley provides important habitats for many landbirds, particularly those that require grasslands for breeding. Several species exhibited local declines when compared to the regional Breeding Bird Survey routes. We offer an approach that evaluates population changes of small landbirds and provides objective inputs for conservation directives. These can be adopted easily for use on military installations (that use LCTA), parks, and wildlife refuges that have data from annual breeding bird surveys.


Asunto(s)
Aves , Conservación de los Recursos Naturales , Monitoreo del Ambiente/normas , Personal Militar , Animales , Recolección de Datos , Movimiento , Dinámica Poblacional , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA