Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 29(1): 36-44, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239692

RESUMEN

Mammalian glycosaminoglycans are linear complex polysaccharides comprising heparan sulfate, heparin, dermatan sulfate, chondroitin sulfate, keratan sulfate and hyaluronic acid. They bind to numerous proteins and these interactions mediate their biological activities. GAG-protein interaction data reported in the literature are curated mostly in MatrixDB database (http://matrixdb.univ-lyon1.fr/). However, a standard nomenclature and a machine-readable format of GAGs together with bioinformatics tools for mining these interaction data are lacking. We report here the building of an automated pipeline to (i) standardize the format of GAG sequences interacting with proteins manually curated from the literature, (ii) translate them into the machine-readable GlycoCT format and into SNFG (Symbol Nomenclature For Glycan) images and (iii) convert their sequences into a format processed by a builder generating three-dimensional structures of polysaccharides based on a repertoire of conformations experimentally validated by data extracted from crystallized GAG-protein complexes. We have developed for this purpose a converter (the CT23D converter) to automatically translate the GlycoCT code of a GAG sequence into the input file required to construct a three-dimensional model.


Asunto(s)
Glicosaminoglicanos/química , Modelos Moleculares , Programas Informáticos , Animales , Conformación de Carbohidratos , Glicosaminoglicanos/genética , Humanos
2.
Nucleic Acids Res ; 47(D1): D376-D381, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30371822

RESUMEN

MatrixDB (http://matrixdb.univ-lyon1.fr/) is an interaction database focused on biomolecular interactions established by extracellular matrix (ECM) proteins and glycosaminoglycans (GAGs). It is an active member of the International Molecular Exchange (IMEx) consortium (https://www.imexconsortium.org/). It has adopted the HUPO Proteomics Standards Initiative standards for annotating and exchanging interaction data, either at the MIMIx (The Minimum Information about a Molecular Interaction eXperiment) or IMEx level. The following items related to GAGs have been added in the updated version of MatrixDB: (i) cross-references of GAG sequences to the GlyTouCan database, (ii) representation of GAG sequences in different formats (IUPAC and GlycoCT) and as SNFG (Symbol Nomenclature For Glycans) images and (iii) the GAG Builder online tool to build 3D models of GAG sequences from GlycoCT codes. The database schema has been improved to represent n-ary experiments. Gene expression data, imported from Expression Atlas (https://www.ebi.ac.uk/gxa/home), quantitative ECM proteomic datasets (http://matrisomeproject.mit.edu/ecm-atlas), and a new visualization tool of the 3D structures of biomolecules, based on the PDB Component Library and LiteMol, have also been added. A new advanced query interface now allows users to mine MatrixDB data using combinations of criteria, in order to build specific interaction networks related to diseases, biological processes, molecular functions or publications.


Asunto(s)
Bases de Datos de Compuestos Químicos , Proteínas de la Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Animales , Bases de Datos de Proteínas , Dimerización , Matriz Extracelular/química , Expresión Génica , Humanos , Unión Proteica , Proteoma
3.
Glycobiology ; 25(12): 1480-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26240168

RESUMEN

The present study reports a comprehensive nuclear magnetic resonance (NMR) characterization and a systematic conformational sampling of the conformational preferences of 170 glycan moieties of glycosphingolipids as produced in large-scale quantities by bacterial fermentation. These glycans span across a variety of families including the blood group antigens (A, B and O), core structures (Types 1, 2 and 4), fucosylated oligosaccharides (core and lacto-series), sialylated oligosaccharides (Types 1 and 2), Lewis antigens, GPI-anchors and globosides. A complementary set of about 100 glycan determinants occurring in glycoproteins and glycosaminoglycans has also been structurally characterized using molecular mechanics-based computation. The experimental and computational data generated are organized in two relational databases that can be queried by the user through a user-friendly search engine. The NMR ((1)H and (13)C, COSY, TOCSY, HMQC, HMBC correlation) spectra and 3D structures are available for visualization and download in commonly used structure formats. Emphasis has been given to the use of a common nomenclature for the structural encoding of the carbohydrates and each glycan molecule is described by four different types of representations in order to cope with the different usages in chemistry and biology. These web-based databases were developed with non-proprietary software and are open access for the scientific community available at http://glyco3d.cermav.cnrs.fr.


Asunto(s)
Bases de Datos como Asunto , Glicoesfingolípidos/química , Polisacáridos/química , Conformación de Carbohidratos , Humanos , Espectroscopía de Resonancia Magnética
4.
Methods Mol Biol ; 1273: 241-58, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25753716

RESUMEN

The present work describes, in a detailed way, a family of databases covering the three-dimensional features of monosaccharides, disaccharides, oligosaccharides, polysaccharides, glycosyltransferases, lectins, monoclonal antibodies against carbohydrates, and glycosaminoglycan-binding proteins. These databases have been developed with non-proprietary software, and they are open freely to the scientific community. They are accessible through the common portal called "Glyco3D" http://www.glyco3d.cermav.cnrs.fr. The databases are accompanied by a user-friendly graphical user interface (GUI) which offers several search options. All three-dimensional structures are available for visual consultations (with basic measurements possibilities) and can be downloaded in commonly used formats for further uses.


Asunto(s)
Glicómica/métodos , Polisacáridos/química , Programas Informáticos , Animales , Secuencia de Carbohidratos , Bases de Datos Factuales , Glicosiltransferasas/metabolismo , Humanos , Lectinas/química , Oligosacáridos/análisis , Motor de Búsqueda
6.
Carbohydr Res ; 339(5): 949-59, 2004 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-15010302

RESUMEN

Uromodulin is the pregnancy-associated Tamm-Horsfall glycoprotein, with the enhanced ability to inhibit T-cell proliferation. Pregnancy-associated structural changes mainly occur in the O-glycosylation of this glycoprotein. These include up to 12 glycan structures, made up of an unusual core type 2 sequence terminated with one, two, or three sialyl Lewis(x) sequences; this type of O-glycans could serve as E- and P-selectin ligands. The present work focuses on the most complex one; a tetradecamer made up of a type 2 core carrying three sialyl Lewis(x) branches. Five different monosaccharides are assembled by 14 glycosidic linkages. The conformational behavior of the constituting disaccharide segments was evaluated using the flexible residue procedure of the MM3 molecular mechanics procedure. For each disaccharide, the adiabatic energy surface, along with the local energy minima were established. All these results were used for the generation, prior to complete optimization of the tetradecamer. This was followed by a complete exploration of conformational hyperspace throughout the use of the single coordinate method as implemented in the CICADA program. Despite the potential flexibility of the tetradecasaccharide, only four conformational families occur, accounting for more than 95% of the total low energy conformations. For each family, the molecular properties (electrostatic, lipophilicity, and hydrogen potential) were studied. The shape of the tetradecasaccharide is best described as a flat ribbon, flanked by three branches having terminal sialyl residues. Two of the branches interact through nonbonded interactions, bringing further energy stabilization, and limiting the conformational flexibility of the sialyl residues. Only one branch maintains the original conformational features of sialyl Lewis(x). This O-glycan can be seen as a fascinating example of 'dendrimeric' structure, where the spatial arrangement of three S-Le(x) epitopes may favor its complementary 'presentations' for the interactions with E- and P-selectins.


Asunto(s)
Biología Computacional , Mucoproteínas/química , Oligosacáridos/química , Programas Informáticos , Conformación de Carbohidratos , Uromodulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...