Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39001451

RESUMEN

Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) gene variations are linked to the development of numerous cancers, including non-small cell lung cancer (NSCLC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). The lack of typical drug-binding sites has long hampered the discovery of therapeutic drugs targeting KRAS. Since "CodeBreaK 100" demonstrated Sotorasib's early safety and efficacy and led to its approval, especially in the treatment of non-small cell lung cancer (NSCLC), the subsequent identification of specific inhibitors for the p.G12C mutation has offered hope. However, the CodeBreaK 200 study found no significant difference in overall survival (OS) between patients treated with Docetaxel and Sotorasib (AMG 510), adding another degree of complexity to this ongoing challenge. The current study compares the three-dimensional structures of the two major KRAS isoforms, KRAS4A and KRAS4B. It also investigates the probable structural changes caused by the three major mutations (p.G12C, p.G12D, and p.G12V) within Sotorasib's pocket domain. The computational analysis demonstrates that the wild-type and mutant isoforms have distinct aggregation propensities, resulting in the creation of alternate oligomeric configurations. This study highlights the increased complexity of the biological issue of using KRAS as a therapeutic target. The present study stresses the need for a better understanding of the structural dynamics of KRAS and its mutations to design more effective therapeutic approaches. It also emphasizes the potential of computational approaches to shed light on the complicated molecular pathways that drive KRAS-mediated oncogenesis. This study adds to the ongoing efforts to address the therapeutic hurdles presented by KRAS in cancer treatment.

2.
Genes (Basel) ; 15(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39062605

RESUMEN

FBRSL1, together with FBRS and AUTS2 (Activator of Transcription and Developmental Regulator; OMIM 607270), constitutes a tripartite AUTS2 gene family. AUTS2 and FBRSL1 are evolutionarily more closely related to each other than to FBRS (Fibrosin 1; OMIM 608601). Despite its paralogous relation to AUTS2, FBRSL1's precise role remains unclear, though it likely shares functions in neurogenesis and transcriptional regulation. Herein, we report the clinical presentation with therapeutic approaches and the molecular etiology of a patient harboring a de novo truncating variant (c.371dupC) in FBRSL1, leading to a premature stop codon (p.Cys125Leufs*7). Our study extends previous knowledge by highlighting potential interactions and implications of this variant, alongside maternal and paternal duplications, for the patient's phenotype. Using sequence conservation data and in silico analysis of the truncated protein, we generated a predicted domain structure. Furthermore, our in silico analysis was extended by taking into account SNP array results. The extension of in silico analysis was performed due to the possibility that the coexistence of FBRSL1 truncating variant contemporary with maternal and paternal duplication could be a modifier of proband's phenotype and/or influence the novel syndrome clinical characteristics. FBRSL1 protein may be involved in neurodevelopment due to its homology with AUTS2, together with distinctive neuronal expression profiles, and thus should be considered as a potential modulation of clinical characteristics in a novel syndrome. Finally, considering that FBRSL1 is apparently involved in neurogenesis and in transcriptional regulatory networks that orchestrate gene expression, together with the observation that different genetic syndromes are associated with distinct genomic DNA methylation patterns, the specific episignature has been explored.


Asunto(s)
Proteínas del Citoesqueleto , Discapacidad Intelectual , Factores de Transcripción , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Factores de Transcripción/genética , Proteínas del Citoesqueleto/genética , Masculino , Femenino , Síndrome , Fenotipo , Codón sin Sentido/genética
3.
Diagnostics (Basel) ; 14(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893724

RESUMEN

BACKGROUND: This study aims to evaluate maternal reassurance, satisfaction, and anxiety after two different strategies for the first-trimester screening for aneuploidies. METHODS: Patients between 11 + 3 and 13 + 6 weeks of gestation attending the first-trimester screening at Department of Mother and Child, University Hospital Federico II, Naples, Italy have been recruited and randomly allocated to contingent screening or universal cell-free fetal DNA testing (cffDNA). Questionnaires to measure reassurance, satisfaction, and anxiety have been filled twice: (Q1) after randomization and (Q2) after receiving results. Anxiety was measured by an Italian-version short form of the state scale of the Spielberger State-Trait Anxiety Inventory (STAI); child-related anxiety was measured by the 11-item Pregnancy-Related Anxiety Questionnaire-Revised Regardless of Parity (PRAQ-R2 scale); fear of bearing a physically or mentally handicapped child was measured considering only four items (item 4, 9, 10, and 11) of the PRAQ-R2 scale. RESULTS: 431 patients were recruited: 205 (49%) were randomized in the contingent screening arm, 226 (51%) in the cfDNA arm. Maternal reassurance, satisfaction, and anxiety were not different in the two groups. CONCLUSION: A contingent screening for aneuploidies in the first trimester seems able to ensure the same maternal reassurance and satisfaction as a cfDNA analysis in the low-risk population and to not affect maternal anxiety.

4.
Genes (Basel) ; 14(1)2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36672906

RESUMEN

Pathogenic variants in genes are involved in histone acetylation and deacetylation resulting in congenital anomalies, with most patients displaying a neurodevelopmental disorder and dysmorphism. Arboleda-Tham syndrome caused by pathogenic variants in KAT6A (Lysine Acetyltransferase 6A; OMIM 601408) has been recently described as a new neurodevelopmental disorder. Herein, we describe a patient characterized by complex phenotype subsequently diagnosed using the clinical exome sequencing (CES) with Arboleda-Tham syndrome (ARTHS; OMIM 616268). The analysis revealed the presence of de novo pathogenic variant in KAT6A gene, a nucleotide c.3385C>T substitution that introduces a premature termination codon (p.Arg1129*). The need for straight multidisciplinary collaboration and accurate clinical description findings (bowel obstruction/megacolon/intestinal malrotation) was emphasized, together with the utility of CES in establishing an etiological basis in clinical and genetical heterogeneous conditions. Therefore, considering the phenotypic characteristics, the condition's rarity and the reviewed literature, we propose additional diagnostic criteria that could help in the development of future clinical diagnostic guidelines. This was possible thanks to objective examinations performed during the long follow-up period, which permitted scrupulous registration of phenotypic changes over time to further assess this rare disorder. Finally, given that different genetic syndromes are associated with distinct genomic DNA methylation patterns used for diagnostic testing and/or as biomarker of disease, a specific episignature for ARTHS has been identified.


Asunto(s)
Histona Acetiltransferasas , Trastornos del Neurodesarrollo , Humanos , Codón sin Sentido , Pruebas Genéticas , Histona Acetiltransferasas/genética , Trastornos del Neurodesarrollo/genética , Fenotipo
5.
J Genet Eng Biotechnol ; 20(1): 129, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066672

RESUMEN

BACKGROUND: In the last 2 years, we have been fighting against SARS-CoV-2 viral infection, which continues to claim victims all over the world. The entire scientific community has been mobilized in an attempt to stop and eradicate the infection. A well-known feature of RNA viruses is their high mutational rate, particularly in specific gene regions. The SARS-CoV-2 S protein is also affected by these changes, allowing viruses to adapt and spread more easily. The vaccines developed using mRNA coding protein S undoubtedly contributed to the "fight" against the COVID-19 pandemic even though the presence of new variants in the spike protein could result in protein conformational changes, which could affect vaccine immunogenicity and thus vaccine effectiveness. RESULTS: The study presents the findings of an in silico analysis using various bioinformatics tools finding conserved sequences inside SARS-CoV-2 S protein (encoding mRNA) same as in the vaccine RNA sequences that could be targeted by specific host RNA-binding proteins (RBPs). According to the results an interesting scenario emerges involving host RBPs competition and subtraction. The presence of viral RNA in cytoplasm could be a new tool in the virus's armory, allowing it to improve its chances of survival by altering cell gene expression and thus interfering with host cell processes. In silico analysis was used also to evaluate the presence of similar human miRNA sequences within RBPs motifs that can modulate human RNA expression. Increased cytoplasmic availability of exogenous RNA fragments derived from RNA physiological degradation could potentially mimic the effect of host human miRNAs within the cell, causing modulation of the host cell network. CONCLUSIONS: Our in silico analysis could aid in shedding light on the potential effects of exogenous RNA (i.e. viruses and vaccines), thereby improving our understanding of the cellular interactions between virus and host biomolecules. Finally, using the computational approach, it is possible to obtain a safety assessment of RNA-based vaccines as well as indications for use in specific clinical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA