Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angiogenesis ; 24(4): 843-860, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34342749

RESUMEN

Cerebral cavernous malformation (CCM) is a cerebrovascular disease in which stacks of dilated haemorrhagic capillaries form focally in the brain. Whether and how defective mechanotransduction, cellular mosaicism and inflammation interplay to sustain the progression of CCM disease is unknown. Here, we reveal that CCM1- and CCM2-silenced endothelial cells expanded in vitro enter into senescence-associated secretory phenotype (SASP) that they use to invade the extracellular matrix and attract surrounding wild-type endothelial and immune cells. Further, we demonstrate that this SASP is driven by the cytoskeletal, molecular and transcriptomic disorders provoked by ROCK dysfunctions. By this, we propose that CCM2 and ROCK could be parts of a scaffold controlling senescence, bringing new insights into the emerging field of the control of ageing by cellular mechanics. These in vitro findings reconcile the known dysregulated traits of CCM2-deficient endothelial cells into a unique endothelial fate. Based on these in vitro results, we propose that a SASP could link the increased ROCK-dependent cell contractility in CCM2-deficient endothelial cells with microenvironment remodelling and long-range chemo-attraction of endothelial and immune cells.


Asunto(s)
Células Endoteliales , Hemangioma Cavernoso del Sistema Nervioso Central , Proteínas Portadoras/genética , Células Endoteliales/metabolismo , Humanos , Mecanotransducción Celular , Fenotipo , Fenotipo Secretor Asociado a la Senescencia , Microambiente Tumoral
2.
Small GTPases ; 12(5-6): 429-439, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33487105

RESUMEN

Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.


Asunto(s)
Citoesqueleto de Actina/fisiología , Movimiento Celular , Matriz Extracelular/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Podosomas/fisiología , Citoesqueleto de Actina/enzimología , Animales , Humanos , Podosomas/enzimología
3.
J Cell Biol ; 220(2)2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33399853

RESUMEN

Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. ß1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with ß1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.


Asunto(s)
Podosomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPV/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Adhesión Celular , Cisteína/metabolismo , Ácido Ditionitrobenzoico , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrógeno/metabolismo , Integrina beta1/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Modelos Biológicos , Miosina Tipo I/metabolismo , Transporte de Proteínas , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA