Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 31(1): 230-248, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35982622

RESUMEN

Mesenchymal stromal cells (MSCs) have been employed in vitro to support hematopoietic stem and progenitor cell (HSPC) expansion and in vivo to promote HSPC engraftment. Based on these studies, we developed an MSC-based co-culture system to optimize the transplantation outcome of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene-edited (GE) human HSPCs. We show that bone marrow (BM)-MSCs produce several hematopoietic supportive and anti-inflammatory factors capable of alleviating the proliferation arrest and mitigating the apoptotic and inflammatory programs activated in GE-HSPCs, improving their expansion and clonogenic potential in vitro. The use of BM-MSCs resulted in superior human engraftment and increased clonal output of GE-HSPCs contributing to the early phase of hematological reconstitution in the peripheral blood of transplanted mice. In conclusion, our work poses the biological bases for a novel clinical use of BM-MSCs to promote engraftment of GE-HSPCs and improve their transplantation outcome.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Edición Génica , Sistemas CRISPR-Cas , Células Madre Hematopoyéticas , Trasplante de Células Madre Hematopoyéticas/métodos
3.
Cancer Immunol Res ; 10(1): 126-141, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34815265

RESUMEN

Cytotoxic T cell (CTL) infiltration of the tumor carries the potential to limit cancer progression, but their exclusion by the immunosuppressive tumor microenvironment hampers the efficiency of immunotherapy. Here, we show that expression of the axon guidance molecule Plexin-A4 (Plxna4) in CTLs, especially in effector/memory CD8+ T cells, is induced upon T-cell activation, sustained in the circulation, but reduced when entering the tumor bed. Therefore, we deleted Plxna4 and observed that Plxna4-deficient CTLs acquired improved homing capacity to the lymph nodes and to the tumor, as well as increased proliferation, both achieved through enhanced Rac1 activation. Mice with stromal or hematopoietic Plxna4 deletion exhibited enhanced CTL infiltration and impaired tumor growth. In a melanoma model, adoptive transfer of CTLs lacking Plxna4 prolonged survival and improved therapeutic outcome, which was even stronger when combined with anti-programmed cell death protein 1 (PD-1) treatment. PLXNA4 abundance in circulating CTLs was augmented in melanoma patients versus healthy volunteers but decreased after the first cycle of anti-PD-1, alone or in combination with anti-cytotoxic T-Lymphocyte Associated Protein 4 (CTLA-4), in those patients showing complete or partial response to the treatment. Altogether, our data suggest that Plxna4 acts as a "checkpoint," negatively regulating CTL migration and proliferation through cell-autonomous mechanisms independent of the interaction with host-derived Plxna4 ligands, semaphorins. These findings pave the way toward Plxna4-centric immunotherapies and propose Plxna4 detection in circulating CTLs as a potential way to monitor the response to immune checkpoint blockade in patients with metastatic melanoma.


Asunto(s)
Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Proteínas del Tejido Nervioso/farmacología , Linfocitos T Citotóxicos/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Activación de Linfocitos , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Superficie Celular/genética , Microambiente Tumoral/inmunología
4.
Aging Cell ; 18(3): e12933, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30828977

RESUMEN

Hematopoietic stem and progenitor cells (HSPC) reside in the bone marrow (BM) niche and serve as a reservoir for mature blood cells throughout life. Aging in the BM is characterized by low-grade chronic inflammation that could contribute to the reduced functionality of aged HSPC. Mesenchymal stromal cells (MSC) in the BM support HSPC self-renewal. However, changes in MSC function with age and the crosstalk between MSC and HSPC remain understudied. Here, we conducted an extensive characterization of senescence features in BM-derived MSC from young and aged healthy donors. Aged MSC displayed an enlarged senescent-like morphology, a delayed clonogenic potential and reduced proliferation ability when compared to younger counterparts. Of note, the observed proliferation delay was associated with increased levels of SA-ß-galactosidase (SA-ß-Gal) and lipofuscin in aged MSC at early passages and a modest but consistent accumulation of physical DNA damage and DNA damage response (DDR) activation. Consistent with the establishment of a senescence-like state in aged MSC, we detected an increase in pro-inflammatory senescence-associated secretory phenotype (SASP) factors, both at the transcript and protein levels. Conversely, the immunomodulatory properties of aged MSC were significantly reduced. Importantly, exposure of young HSPC to factors secreted by aged MSC induced pro-inflammatory genes in HSPC and impaired HSPC clonogenic potential in a SASP-dependent manner. Altogether, our results reveal that BM-derived MSC from aged healthy donors display features of senescence and that, during aging, MSC-associated secretomes contribute to activate an inflammatory transcriptional program in HSPC that may ultimately impair their functionality.


Asunto(s)
Senescencia Celular/inmunología , Citocinas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Inflamación/inmunología , Células Madre Mesenquimatosas/metabolismo , Adolescente , Adulto , Anciano , Proliferación Celular/fisiología , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Ensayo de Unidades Formadoras de Colonias , Citocinas/genética , Daño del ADN/genética , Daño del ADN/fisiología , Citometría de Flujo , Células Madre Hematopoyéticas/inmunología , Humanos , Inflamación/metabolismo , Lipofuscina/metabolismo , Células Madre Mesenquimatosas/inmunología , Células Madre Mesenquimatosas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven , beta-Galactosidasa/metabolismo
5.
J Clin Invest ; 129(4): 1566-1580, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30830876

RESUMEN

BACKGROUND: The human bone marrow (BM) niche contains a population of mesenchymal stromal cells (MSCs) that provide physical support and regulate hematopoietic stem cell (HSC) homeostasis. ß-Thalassemia (BT) is a hereditary disorder characterized by altered hemoglobin beta-chain synthesis amenable to allogeneic HSC transplantation and HSC gene therapy. Iron overload (IO) is a common complication in BT patients affecting several organs. However, data on the BM stromal compartment are scarce. METHODS: MSCs were isolated and characterized from BM aspirates of healthy donors (HDs) and BT patients. The state of IO was assessed and correlated with the presence of primitive MSCs in vitro and in vivo. Hematopoietic supportive capacity of MSCs was evaluated by transwell migration assay and 2D coculture of MSCs with human CD34+ HSCs. In vivo, the ability of MSCs to facilitate HSC engraftment was tested in a xenogenic transplant model, whereas the capacity to sustain human hematopoiesis was evaluated in humanized ossicle models. RESULTS: We report that, despite iron chelation, BT BM contains high levels of iron and ferritin, indicative of iron accumulation in the BM niche. We found a pauperization of the most primitive MSC pool caused by increased ROS production in vitro which impaired MSC stemness properties. We confirmed a reduced frequency of primitive MSCs in vivo in BT patients. We also discovered a weakened antioxidative response and diminished expression of BM niche-associated genes in BT-MSCs. This caused a functional impairment in MSC hematopoietic supportive capacity in vitro and in cotransplantation models. In addition, BT-MSCs failed to form a proper BM niche in humanized ossicle models. CONCLUSION: Our results suggest an impairment in the mesenchymal compartment of BT BM niche and highlight the need for novel strategies to target the niche to reduce IO and oxidative stress before transplantation. FUNDING: This work was supported by the SR-TIGET Core grant from Fondazione Telethon and by Ricerca Corrente.


Asunto(s)
Células de la Médula Ósea/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Estrés Oxidativo , Talasemia beta/metabolismo , Animales , Células de la Médula Ósea/patología , Técnicas de Cocultivo , Células Madre Hematopoyéticas/patología , Humanos , Ratones , Células del Estroma/metabolismo , Células del Estroma/patología , Talasemia beta/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...