Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 387, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046422

RESUMEN

Mercury's metallic core is expected to have formed under highly reducing conditions, resulting in the presence of significant quantities of silicon alloyed to iron. Here we present the phase diagram of the Fe-FeSi system, reconstructed from in situ X-ray diffraction measurements at pressure and temperature conditions spanning over those expected for Mercury's core, and ex situ chemical analysis of recovered samples. Under high pressure, we do not observe a miscibility gap between the cubic fcc and B2 structures, but rather the formation of a re-entrant bcc phase at temperatures close to melting. Upon melting, the investigated alloys are observed to evolve towards two distinct Fe-rich and Fe-poor liquid compositions at pressures below 35-38 GPa. The evolution of the phase diagram with pressure and temperature prescribes a range of possible core crystallization regimes, with strong dependence on the Si abundance of the core.

2.
Orig Life Evol Biosph ; 46(4): 369-384, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27337974

RESUMEN

The Interuniversity Attraction Pole (IAP) 'PLANET TOPERS' (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their Reservoirs) addresses the fundamental understanding of the thermal and compositional evolution of the different reservoirs of planetary bodies (core, mantle, crust, atmosphere, hydrosphere, cryosphere, and space) considering interactions and feedback mechanisms. Here we present the first results after 2 years of project work.


Asunto(s)
Evolución Planetaria , Medio Ambiente Extraterrestre , Planetas , Exobiología
3.
Science ; 346(6207): 322-4, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25324382

RESUMEN

Like our Moon, the majority of the solar system's satellites are locked in a 1:1 spin-orbit resonance; on average, these satellites show the same face toward the planet at a constant rotation rate equal to the satellite's orbital rate. In addition to the uniform rotational motion, physical librations (oscillations about an equilibrium) also occur. The librations may contain signatures of the satellite's internal properties. Using stereophotogrammetry on Cassini Image Science Subsystem (ISS) images, we measured longitudinal physical forced librations of Saturn's moon Mimas. Our measurements confirm all the libration amplitudes calculated from the orbital dynamics, with one exception. This amplitude depends mainly on Mimas' internal structure and has an observed value of twice the predicted one, assuming hydrostatic equilibrium. After considering various possible interior models of Mimas, we argue that the satellite has either a large nonhydrostatic interior, or a hydrostatic one with an internal ocean beneath a thick icy shell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...