Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 878: 163123, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37001657

RESUMEN

Poly- and perfluoroalkyl substances (PFAS) are a class of manufactured chemicals that have recently attracted a great deal of attention from environmental regulators and the general public because of their high prevalence, resistance to degradation, and potential toxicity. This review summarizes the current state of PFAS and its effects on the environment of North Carolina, USA. Specific emphasis has been placed to identify i) the sources of PFAS in North Carolina ii) distribution of PFAS in different environmental segments of North Carolina, including surface water, groundwater, air, and sediment iii) drinking water contamination iv) impact of PFAS on human health v) PFAS accumulation in fish and other biota vi) status of PFAS removal from drinking water and finally vi) socioeconomic impact of PFAS uncertainties. Continuous discharges of PFAS occur in the North Carolina environment from direct and indirect sources, including manufacturing sites, firefighting foam, waste disposal and treatment plants, landfill leachate, and industrial emissions. PFAS are widespread in many environmental segments of North Carolina. They are more likely to be detected in surface and groundwater sediments and can enter aquatic bodies through direct discharge and wet and dry deposition of emissions. Eventually, some adverse effects of PFAS have already been reported in North Carolina residents who could have been exposed to the chemicals through contaminated drinking water. Furthermore, PFAS were also found in blood samples from fish and alligators. PFAS were confirmed to be present in water, sediment, organic compounds, and aquatic species at all levels of the food web. However, there is still a substantial amount of work to be done to understand the actual contamination by PFAS in North Carolina comprehensively.


Asunto(s)
Agua Potable , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Animales , Agua Potable/análisis , Fluorocarburos/toxicidad , Fluorocarburos/análisis , North Carolina , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química
2.
Heliyon ; 9(1): e12883, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36691543

RESUMEN

Given the carcinogenic properties of formaldehyde-based chemicals, an alternative method for resin-finishing cotton textiles is urgently needed. Therefore, the primary objective of this study is to introduce a sustainable resin-finishing process for cotton fabric via an industrial procedure. For this purpose, Bluesign® approved a formaldehyde-free Knittex RCT® resin was used, and the process parameters were designed and optimized according to the Taguchi L27 method. XRD analysis confirmed the crosslinking formation between resin and neighboring molecules of cotton fabric, as no change in the cellulose crystallization phase. Several machine learning models were built in a sequence to predict the crease recovery angle (CRA), tearing strength (TE) and whiteness index (WI). Assessment of modelling was evaluated through the use of various metrics such as root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). Results were compared to those from other regression models, such as principal component regression (PCR), partial least squares regression (PLSR), and fuzzy modelling. Based on the results of our research, the LSSVR model predicted the CRA, TE, and WI with substantially more accuracy than other models, as shown by the fact that its RMSE and MAE values were significantly lower. In addition, it offered the greatest possible R2 values, reaching up to 0.9627.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...