Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet World ; 17(1): 179-184, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38406353

RESUMEN

Background and Aim: Antimicrobial resistance (AMR) is becoming a public health concern. Foodborne pathogens are infectious agents that can be transmitted from animals to humans through food and can become resistant due to misuse and overuse of antibiotics, especially in poultry. This study aimed to detect the prevalence of multidrug-resistant and extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli isolated from local and broiler chickens at the Cibinong market, West Java, Indonesia. Materials and Methods: A total of 60 cloacal swab samples from 30 local and broiler chickens sold at the Cibinong market in West Java were obtained by random sampling. From these samples, 39 E. coli isolates were obtained after being cultured on eosin methylene blue agar and molecularly identified using polymerase chain reaction (PCR). Six antibiotic disks were used for the antibiotic sensitivity test against E. coli isolates cultured on Mueller-Hinton agar. PCR was performed to detect ESBL genes (blaTEM, blaSHV, and blaCTX-M). Results: A total of 76.47% (39/51) cloacal swab samples were positive for E. coli. All E. coli isolates were sensitive to imipenem (100%), and 38 isolates were sensitive to cefoxitin (FOX) (97.4%). On average, the isolates were sensitive to amoxicillin-clavulanic acid (AMC) (69.2%) and ceftriaxone (CRO) (89.7%). E. coli isolates were occasionally resistant to enrofloxacin (25.64%), followed by gentamicin (20.51%), CRO (10.25%), AMC (7.69%), and FOX (2.56%). The prevalence of E. coli AMR was 10.25% (4/39). All four multidrug-resistant E. coli isolates (blaTEM and blaCTX-M) were confirmed to have the ESBL gene based on PCR. Conclusion: The prevalence of multidrug-resistant and ESBL-producing E. coli is still found, proving that there is still inappropriate use of antibiotics and a need for strict supervision of their use, especially around Cibinong market, West Java.

2.
PeerJ ; 10: e13132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341058

RESUMEN

Background: Indonesia is one of the Southeast Asian countries with high case numbers of COVID-19 with up to 4.2 million confirmed cases by 29 October 2021. Understanding the genome of SARS-CoV-2 is crucial for delivering public health intervention as certain variants may have different attributes that can potentially affect their transmissibility, as well as the performance of diagnostics, vaccines, and therapeutics. Objectives: We aimed to investigate the dynamics of circulating SARS-CoV-2 variants over a 15-month period in Bogor and its surrounding areas in correlation with the first and second wave of COVID-19 in Indonesia. Methods: Nasopharyngeal and oropharyngeal swab samples collected from suspected patients from Bogor, Jakarta and Tangerang were confirmed for SARS-CoV-2 infection with RT-PCR. RNA samples of those confirmed patients were subjected to whole genome sequencing using the ARTIC Network protocol and sequencer platform from Oxford Nanopore Technologies (ONT). Results: We successfully identified 16 lineages and six clades out of 202 samples (male n = 116, female n = 86). Genome analysis revealed that Indonesian lineage B.1.466.2 dominated during the first wave (n = 48, 23.8%) while Delta variants (AY.23, AY.24, AY.39, AY.42, AY.43 dan AY.79) were dominant during the second wave (n = 53, 26.2%) following the highest number of confirmed cases in Indonesia. In the spike protein gene, S_D614G and S_P681R changes were dominant in both B.1.466.2 and Delta variants, while N439K was only observed in B.1.466.2 (n = 44) and B.1.470 (n = 1). Additionally, the S_T19R, S_E156G, S_F157del, S_R158del, S_L452R, S_T478K, S_D950N and S_V1264L changes were only detected in Delta variants, consistent with those changes being characteristic of Delta variants in general. Conclusions: We demonstrated a shift in SARS-CoV-2 variants from the first wave of COVID-19 to Delta variants in the second wave, during which the number of confirmed cases surpassed those in the first wave of COVID-19 pandemic. Higher proportion of unique mutations detected in Delta variants compared to the first wave variants indicated potential mutational effects on viral transmissibility that correlated with a higher incidence of confirmed cases. Genomic surveillance of circulating variants, especially those with higher transmissibility, should be continuously conducted to rapidly inform decision making and support outbreak preparedness, prevention, and public health response.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Masculino , SARS-CoV-2/genética , COVID-19/epidemiología , Indonesia/epidemiología , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...