Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Cell Rep ; 43(6): 114259, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38819988

RESUMEN

CD4+ T cells are central to adaptive immunity. Their role in cross-protection in viral infections such as influenza and severe acute respiratory syndrome (SARS) is well documented; however, molecular rules governing T cell receptor (TCR) engagement of peptide-human leukocyte antigen (pHLA) class II are less understood. Here, we exploit an aspect of HLA class II presentation, the peptide-flanking residues (PFRs), to "tune" CD4+ T cell responses within an in vivo model system of influenza. Using a recombinant virus containing targeted substitutions at immunodominant HLA-DR1 epitopes, we demonstrate limited weight loss and improved clinical scores after heterosubtypic re-challenge. We observe enhanced protection linked to lung-derived influenza-specific CD4+ and CD8+ T cells prior to re-infection. Structural analysis of the ternary TCR:pHLA complex identifies that flanking amino acids influence side chains in the core 9-mer peptide, increasing TCR affinity. Augmentation of CD4+ T cell immunity is achievable with a single mutation, representing a strategy to enhance adaptive immunity that is decoupled from vaccine modality.

2.
Phys Rev Lett ; 132(3): 037102, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38307067

RESUMEN

Single-file transport refers to the motion of particles in a narrow channel, such that they cannot bypass each other. This constraint leads to strong correlations between the particles, described by correlation profiles, which measure the correlation between a generic observable and the density of particles at a given position and time. They have recently been shown to play a central role in single-file systems. Up to now, these correlations have only been determined for diffusive systems in the hydrodynamic limit. Here, we consider a model of reflecting point particles on the infinite line, with a general individual stochastic dynamics. We show that the correlation profiles take a simple universal form, at arbitrary time. We illustrate our approach by the study of the integrated current of particles through the origin, and apply our results to representative models such as Brownian particles, run-and-tumble particles and Lévy flights. We further emphasise the generality of our results by showing that they also apply beyond the 1D case, and to other observables.

3.
Alzheimers Dement ; 20(3): 2016-2033, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184788

RESUMEN

INTRODUCTION: Genome-wide association studies link susceptibility to late-onset Alzheimer's disease (LOAD) with EphA1. Sequencing identified a non-synonymous substitution P460L as a LOAD risk variant. Other Ephs regulate vascular permeability and immune cell recruitment. We hypothesized that P460L dysregulates EphA1 receptor activity and impacts neuroinflammation. METHODS: EphA1/P460L receptor activity was assayed in isogenic Human Embryonic Kidney (HEK) cells. Soluble EphA1/P460L (sEphA1/sP460L) reverse signaling in brain endothelial cells was assessed by T-cell recruitment and barrier function assays. RESULTS: EphA1 and P460L were expressed in HEK cells, but membrane and soluble P460L were significantly reduced. Ligand engagement induced Y781 phosphorylation of EphA1 but not P460L. sEphA1 primed brain endothelial cells for increased T-cell recruitment; however, sP460L was less effective. sEphA1 decreased the integrity of the brain endothelial barrier, while sP460L had no effect. DISCUSSION: These findings suggest that P460L alters EphA1-dependent forward and reverse signaling, which may impact blood-brain barrier function in LOAD. HIGHLIGHTS: EphA1-dependent reverse signaling controls recruitment of T cells by brain endothelial cells. EphA1-dependent reverse signaling remodels brain endothelial cell contacts. LOAD-associated P460L variant of EphA1 shows reduced membrane expression and reduced ligand responses. LOAD-associated P460L variant of EphA1 fails to reverse signal to brain endothelial cells.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Barrera Hematoencefálica , Células Endoteliales , Estudio de Asociación del Genoma Completo , Ligandos , Receptor EphA1/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(49): e2203241120, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38015839

RESUMEN

The Lysinibacillus sphaericus proteins Tpp49Aa1 and Cry48Aa1 can together act as a toxin toward the mosquito Culex quinquefasciatus and have potential use in biocontrol. Given that proteins with sequence homology to the individual proteins can have activity alone against other insect species, the structure of Tpp49Aa1 was solved in order to understand this protein more fully and inform the design of improved biopesticides. Tpp49Aa1 is naturally expressed as a crystalline inclusion within the host bacterium, and MHz serial femtosecond crystallography using the novel nanofocus option at an X-ray free electron laser allowed rapid and high-quality data collection to determine the structure of Tpp49Aa1 at 1.62 Å resolution. This revealed the packing of Tpp49Aa1 within these natural nanocrystals as a homodimer with a large intermolecular interface. Complementary experiments conducted at varied pH also enabled investigation of the early structural events leading up to the dissolution of natural Tpp49Aa1 crystals-a crucial step in its mechanism of action. To better understand the cooperation between the two proteins, assays were performed on a range of different mosquito cell lines using both individual proteins and mixtures of the two. Finally, bioassays demonstrated Tpp49Aa1/Cry48Aa1 susceptibility of Anopheles stephensi, Aedes albopictus, and Culex tarsalis larvae-substantially increasing the potential use of this binary toxin in mosquito control.


Asunto(s)
Bacillaceae , Bacillus , Culex , Plaguicidas , Animales , Bacillaceae/química , Bacillaceae/metabolismo , Control de Mosquitos , Larva/metabolismo
5.
Cell Rep ; 42(8): 112827, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37471227

RESUMEN

CD4+ T cells recognize a broad range of peptide epitopes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which contribute to immune memory and limit COVID-19 disease. We demonstrate that the immunogenicity of SARS-CoV-2 peptides, in the context of the model allotype HLA-DR1, does not correlate with their binding affinity to the HLA heterodimer. Analyzing six epitopes, some with very low binding affinity, we solve X-ray crystallographic structures of each bound to HLA-DR1. Further structural definitions reveal the precise molecular impact of viral variant mutations on epitope presentation. Omicron escaped ancestral SARS-CoV-2 immunity to two epitopes through two distinct mechanisms: (1) mutations to TCR-facing epitope positions and (2) a mechanism whereby a single amino acid substitution caused a register shift within the HLA binding groove, completely altering the peptide-HLA structure. This HLA-II-specific paradigm of immune escape highlights how CD4+ T cell memory is finely poised at the level of peptide-HLA-II presentation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Antígeno HLA-DR1 , Epítopos de Linfocito T , Péptidos , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos
6.
Cell ; 186(16): 3333-3349.e27, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37490916

RESUMEN

The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.


Asunto(s)
Antígenos de Neoplasias , Neoplasias , Proteómica , Receptores de Antígenos de Linfocitos T , Antígenos de Neoplasias/metabolismo , Epítopos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Neoplasias/inmunología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/metabolismo
7.
Phys Rev Lett ; 130(21): 218201, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295085

RESUMEN

Absolute negative mobility (ANM) refers to the situation where the average velocity of a driven tracer is opposite to the direction of the driving force. This effect was evidenced in different models of nonequilibrium transport in complex environments, whose description remains effective. Here, we provide a microscopic theory for this phenomenon. We show that it emerges in the model of an active tracer particle submitted to an external force and which evolves on a discrete lattice populated with mobile passive crowders. Resorting to a decoupling approximation, we compute analytically the velocity of the tracer particle as a function of the different parameters of the system and confront our results to numerical simulations. We determine the range of parameters where ANM can be observed, characterize the response of the environment to the displacement of the tracer, and clarify the mechanism underlying ANM and its relationship with negative differential mobility (another hallmark of driven systems far from the linear response).

8.
Phys Rev E ; 107(4-1): 044131, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37198815

RESUMEN

Single-file diffusion refers to the motion of diffusive particles in narrow channels, so that they cannot bypass each other. This constraint leads to the subdiffusion of a tagged particle, called the tracer. This anomalous behavior results from the strong correlations that arise in this geometry between the tracer and the surrounding bath particles. Despite their importance, these bath-tracer correlations have long remained elusive, because their determination is a complex many-body problem. Recently, we have shown that, for several paradigmatic models of single-file diffusion such as the simple exclusion process, these bath-tracer correlations obey a simple exact closed equation. In this paper, we provide the full derivation of this equation, as well as an extension to another model of single-file transport: the double exclusion process. We also make the connection between our results and the ones obtained very recently by several other groups and which rely on the exact solution of different models obtained by the inverse scattering method.

9.
Phys Rev Lett ; 130(2): 020402, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706397

RESUMEN

Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium situation has received a lot of attention, the case where the tracer is driven by an external force, which provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer's position in function of the driving force, up to quadratic order (beyond linear response). This result constitutes the first determination of the bias dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with obstacles in one dimension.

10.
Npj Viruses ; 1(1): 1, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665237

RESUMEN

Human adenoviruses (HAdV) are widespread pathogens causing usually mild infections. The Species D (HAdV-D) cause gastrointestinal tract infections and epidemic keratoconjunctivitis (EKC). Despite being significant pathogens, knowledge around HAdV-D mechanism of cell infection is lacking. Sialic acid (SA) usage has been proposed as a cell infection mechanism for EKC causing HAdV-D. Here we highlight an important role for SA engagement by many HAdV-D. We provide apo state crystal structures of 7 previously undetermined HAdV-D fiber-knob proteins, and structures of HAdV-D25, D29, D30 and D53 fiber-knob proteins in complex with SA. Biologically, we demonstrate that removal of cell surface SA reduced infectivity of HAdV-C5 vectors pseudotyped with HAdV-D fiber-knob proteins, whilst engagement of the classical HAdV receptor CAR was variable. Our data indicates variable usage of SA and CAR across HAdV-D. Better defining these interactions will enable improved development of antivirals and engineering of the viruses into refined therapeutic vectors.

11.
Front Mol Biosci ; 10: 1279700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38161385

RESUMEN

Fukutin-related protein (FKRP, MIM ID 606596) variants cause a range of muscular dystrophies associated with hypo-glycosylation of the matrix receptor, α-dystroglycan. These disorders are almost exclusively caused by homozygous or compound heterozygous missense variants in the FKRP gene that encodes a ribitol phosphotransferase. To understand how seemingly diverse FKRP missense mutations may contribute to disease, we examined the synthesis, intracellular dynamics, and structural consequences of a panel of missense mutations that encompass the disease spectrum. Under non-reducing electrophoresis conditions, wild type FKRP appears to be monomeric whereas disease-causing FKRP mutants migrate as high molecular weight, disulfide-bonded aggregates. These results were recapitulated using cysteine-scanning mutagenesis suggesting that abnormal disulfide bonding may perturb FKRP folding. Using fluorescence recovery after photobleaching, we found that the intracellular mobility of most FKRP mutants in ATP-depleted cells is dramatically reduced but can, in most cases, be rescued with reducing agents. Mass spectrometry showed that wild type and mutant FKRP differentially associate with several endoplasmic reticulum (ER)-resident chaperones. Finally, structural modelling revealed that disease-associated FKRP missense variants affected the local environment of the protein in small but significant ways. These data demonstrate that protein misfolding contributes to the molecular pathophysiology of FKRP-deficient muscular dystrophies and suggest that molecules that rescue this folding defect could be used to treat these disorders.

12.
Toxins (Basel) ; 14(12)2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36548760

RESUMEN

Tpp80Aa1 from Bacillus thuringiensis is a Toxin_10 family protein (Tpp) with reported action against Culex mosquitoes. Here, we demonstrate an expanded target range, showing Tpp80Aa1 is also active against the larvae of Anopheles gambiae and Aedes aegypti mosquitoes. We report the first crystal structure of Tpp80Aa1 at a resolution of 1.8 Å, which shows Tpp80Aa1 consists of two domains: an N-terminal ß-trefoil domain resembling a ricin B lectin and a C-terminal putative pore-forming domain sharing structural similarity with the aerolysin family. Similar to other Tpp family members, we observe Tpp80Aa1 binds to the mosquito midgut, specifically the posterior midgut and the gastric caecum. We also identify that Tpp80Aa1 can interact with galactose-containing glycolipids and galactose, and this interaction is critical for exerting full insecticidal action against mosquito target cell lines.


Asunto(s)
Aedes , Bacillus thuringiensis , Culex , Insecticidas , Animales , Bacillus thuringiensis/metabolismo , Galactosa/metabolismo , Aedes/metabolismo , Insecticidas/química , Culex/metabolismo , Proteínas Bacterianas/metabolismo , Larva/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo
13.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931021

RESUMEN

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Antígenos HLA-A , Antígenos de Histocompatibilidad Clase I , Humanos
14.
Int J Mol Sci ; 23(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35563094

RESUMEN

Cold active esterases have gained great interest in several industries. The recently determined structure of a family IV cold active esterase (EstN7) from Bacillus cohnii strain N1 was used to expand its substrate range and to probe its commercially valuable substrates. Database mining suggested that triacetin was a potential commercially valuable substrate for EstN7, which was subsequently proved experimentally with the final product being a single isomeric product, 1,2-glyceryl diacetate. Enzyme kinetics revealed that EstN7's activity is restricted to C2 and C4 substrates due to a plug at the end of the acyl binding pocket that blocks access to a buried water-filled cavity. Residues M187, N211 and W206 were identified as key plug forming residues. N211A stabilised EstN7 allowing incorporation of the destabilising M187A mutation. The M187A-N211A double mutant had the broadest substrate range, capable of hydrolysing a C8 substrate. W206A did not appear to have any significant effect on substrate range either alone or when combined with the double mutant. Thus, the enzyme kinetics and engineering together with a recently determined structure of EstN7 provide new insights into substrate specificity and the role of acyl binding pocket plug residues in determining family IV esterase stability and substrate range.


Asunto(s)
Esterasas , Estabilidad de Enzimas , Esterasas/metabolismo , Cinética , Especificidad por Sustrato
15.
Mol Ther Oncolytics ; 25: 43-56, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35399606

RESUMEN

Oncolytic virotherapies (OV) hold immense clinical potential. OV based on human adenoviruses (HAdV) derived from HAdV with naturally low rates of pre-existing immunity will be beneficial for future clinical translation. We generated a low-seroprevalence HAdV-D10 serotype vector incorporating an αvß6 integrin-selective peptide, A20, to target αvß6-positive tumor cell types. HAdV-D10 has limited natural tropism. Structural and biological studies of HAdV-D10 knob protein highlighted low-affinity engagement with native adenoviral receptors CAR and sialic acid. HAdV-D10 fails to engage blood coagulation factor X, potentially eliminating "off-target" hepatic sequestration in vivo. We engineered an A20 peptide that selectively binds αvß6 integrin into the DG loop of HAdV-D10 fiber knob. Assays in αvß6+ cancer cell lines demonstrated significantly increased transduction mediated by αvß6-targeted variants compared with controls, confirmed microscopically. HAdV-D10.A20 resisted neutralization by neutralizing HAdV-C5 sera. Systemic delivery of HAdV-D10.A20 resulted in significantly increased GFP expression in BT20 tumors. Replication-competent HAdV-D10.A20 demonstrated αvß6 integrin-selective cell killing in vitro and in vivo. HAdV-D10 possesses characteristics of a promising virotherapy, combining low seroprevalence, weak receptor interactions, and reduced off-target uptake. Incorporation of an αvß6 integrin-selective peptide resulted in HAdV-D10.A20, with significant potential for clinical translation.

16.
Sci Adv ; 8(12): eabm5043, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333581

RESUMEN

In single-file transport particles diffuse in narrow channels while not overtaking each other. it is a fundamental model for the tracer subdiffusion observed in confined systems, such as zeolites or carbon nanotubes. This anomalous behavior originates from strong bath-tracer correlations in one dimension. Despite extensive effort, these remained elusive, because they involve an infinite hierarchy of equations. For the symmetric exclusion process, a paradigmatic model of single-file diffusion, we break the hierarchy to unveil and solve a closed exact equation satisfied by these correlations. Beyond quantifying the correlations, the role of this key equation as a tool for interacting particle systems is further demonstrated by its application to out-of-equilibrium situations, other observables, and other representative single-file systems.

17.
Phys Rev Lett ; 128(3): 038001, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119883

RESUMEN

We calculate the diffusion coefficient of an active tracer in a schematic crowded environment, represented as a lattice gas of passive particles with hardcore interactions. Starting from the master equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our approximation is accurate for a very wide range of parameters, and that it correctly captures numerous nonequilibrium effects, which are the signature of the activity in the system. In addition to the determination of the diffusion coefficient of the tracer, our approach allows us to characterize the perturbation of the environment induced by the displacement of the active tracer. Finally, we consider the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the tracer becomes explicit, and which we argue to be exact.

18.
Sci Adv ; 7(49): eabl8213, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34851659

RESUMEN

Vaccines derived from chimpanzee adenovirus Y25 (ChAdOx1), human adenovirus type 26 (HAdV-D26), and human adenovirus type 5 (HAdV-C5) are critical in combatting the severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic. As part of the largest vaccination campaign in history, ultrarare side effects not seen in phase 3 trials, including thrombosis with thrombocytopenia syndrome (TTS), a rare condition resembling heparin-induced thrombocytopenia (HIT), have been observed. This study demonstrates that all three adenoviruses deployed as vaccination vectors versus SARS-CoV-2 bind to platelet factor 4 (PF4), a protein implicated in the pathogenesis of HIT. We have determined the structure of the ChAdOx1 viral vector and used it in state-of-the-art computational simulations to demonstrate an electrostatic interaction mechanism with PF4, which was confirmed experimentally by surface plasmon resonance. These data confirm that PF4 is capable of forming stable complexes with clinically relevant adenoviruses, an important step in unraveling the mechanisms underlying TTS.

19.
Open Biol ; 11(12): 210182, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34847772

RESUMEN

Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical α/ß hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics.


Asunto(s)
Bacillus/enzimología , Esterasas/química , Bacillus/química , Proteínas Bacterianas/química , Dominio Catalítico , Frío , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Termodinámica
20.
J Immunol ; 207(4): 1009-1017, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34321228

RESUMEN

The human CD8+ T cell clone 6C5 has previously been shown to recognize the tert-butyl-modified Bax161-170 peptide LLSY(3-tBu)FGTPT presented by HLA-A*02:01. This nonnatural epitope was likely created as a by-product of fluorenylmethoxycarbonyl protecting group peptide synthesis and bound poorly to HLA-A*02:01. In this study, we used a systematic approach to identify and characterize natural ligands for the 6C5 TCR. Functional analyses revealed that 6C5 T cells only recognized the LLSYFGTPT peptide when tBu was added to the tyrosine residue and did not recognize the LLSYFGTPT peptide modified with larger (di-tBu) or smaller chemical groups (Me). Combinatorial peptide library screening further showed that 6C5 T cells recognized a series of self-derived peptides with dissimilar amino acid sequences to LLSY(3-tBu)FGTPT. Structural studies of LLSY(3-tBu)FGTPT and two other activating nonamers (IIGWMWIPV and LLGWVFAQV) in complex with HLA-A*02:01 demonstrated similar overall peptide conformations and highlighted the importance of the position (P) 4 residue for T cell recognition, particularly the capacity of the bulky amino acid tryptophan to substitute for the tBu-modified tyrosine residue in conjunction with other changes at P5 and P6. Collectively, these results indicated that chemical modifications directly altered the immunogenicity of a synthetic peptide via molecular mimicry, leading to the inadvertent activation of a T cell clone with unexpected and potentially autoreactive specificities.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Activación de Linfocitos/inmunología , Fragmentos de Péptidos/inmunología , Péptidos/inmunología , Secuencia de Aminoácidos , Presentación de Antígeno/inmunología , Células Cultivadas , Epítopos de Linfocito T/inmunología , Humanos , Ligandos , Biblioteca de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...