Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
ACS Nano ; 18(13): 9584-9604, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513119

RESUMEN

Current cancer vaccines using T cell epitopes activate antitumor T cell immunity through dendritic cell/macrophage-mediated antigen presentation, but they lack the ability to promote B/CD4 T cell crosstalk, limiting their anticancer efficacy. We developed antigen-clustered nanovaccine (ACNVax) to achieve long-term tumor remission by promoting B/CD4 T cell crosstalk. The topographic features of ACNVax were achieved using an iron nanoparticle core attached with an optimal number of gold nanoparticles, where the clusters of HER2 B/CD4 T cell epitopes were conjugated on the gold surface with an optimal intercluster distance of 5-10 nm. ACNVax effectively trafficked to lymph nodes and cross-linked with BCR, which are essential for stimulating B cell antigen presentation-mediated B/CD4 T cell crosstalk in vitro and in vivo. ACNVax, combined with anti-PD-1, achieved long-term tumor remission (>200 days) with 80% complete response in mice with HER2+ breast cancer. ACNVax not only remodeled the tumor immune microenvironment but also induced a long-term immune memory, as evidenced by complete rejection of tumor rechallenge and a high level of antigen-specific memory B, CD4, and CD8 cells in mice (>200 days). This study provides a cancer vaccine design strategy, using B/CD4 T cell epitopes in an antigen clustered topography, to achieve long-term durable anticancer efficacy through promoting B/CD4 T cell crosstalk.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas del Metal , Neoplasias , Ratones , Animales , Nanovacunas , Epítopos de Linfocito T , Oro , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos , Vacunas contra el Cáncer/uso terapéutico , Microambiente Tumoral
2.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37834067

RESUMEN

Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04-0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72-144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Anticuerpos Neutralizantes
3.
mBio ; 14(5): e0046523, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565751

RESUMEN

IMPORTANCE: In this study, we developed a correlative approach that combined DNA immunoprecipitation-seq and RNA-seq analyses to define the regulon of the Chlamydia trachomatis transcription factor Euo. We confirmed the proposed role of Euo as a transcriptional repressor of late chlamydial genes but also showed that Euo activates transcription of a subset of midcycle genes and autoregulates its own expression via negative feedback. This study validates and expands the role of Euo as an important developmental regulator in C. trachomatis. In addition, this genome-wide correlative approach can be applied to study transcription factors in other pathogenic bacteria.


Asunto(s)
Chlamydia trachomatis , Factores de Transcripción , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Factores de Transcripción/metabolismo , ADN/metabolismo , Regiones Promotoras Genéticas , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
J Opt Soc Am A Opt Image Sci Vis ; 40(2): 237-258, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36821194

RESUMEN

Analysis of visual texture is important for many key steps in early vision. We study visual sensitivity to image statistics in three families of textures that include multiple gray levels and correlations in two spatial dimensions. Sensitivities to positive and negative correlations are approximately independent of correlation sign, and signals from different kinds of correlations combine quadratically. We build a computational model, fully constrained by prior studies of sensitivity to uncorrelated textures and black-and-white textures with spatial correlations. The model accounts for many features of the new data, including sign-independence, quadratic combination, and the dependence on gray-level distribution.

5.
R Soc Open Sci ; 10(2): 221458, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36778948

RESUMEN

Tackling the ever-looming threat of antibiotic resistance remains a challenge for clinicians and microbiologists across the globe. Sulfhydryl variable (SHV) is a known bacterial enzyme associated with antibiotic resistance. The SHV enzyme has many variants. The present article describes identification and molecular interaction of a putative inhibitor with the bacterial SHV enzyme as a step towards novel antibacterial drug discovery. The MCULE-platform was used for screening a collection of 5 000 000 ligand molecules to evaluate their binding potential to the bacterial SHV-1 enzyme. Estimation of pharmacokinetic features was realized with the aid of the 'SWISS ADME' tool. Toxicity-checks were also performed. The docked complex of 'the top screened out ligand' and 'the bacterial SHV-1 protein' was subjected to molecular dynamics simulation of 101 ns. The obtained ligand molecule, 1,1'-(4H,8H-Bis[1,2,5]oxadiazolo[3,4-b:3',4'-e]pyrazine-4,8-diyl)diethanone, displayed the most favourable binding interactions with bacterial SHV-1. A total of 15 amino acid residues were found to hold the ligand in the binding site of SHV-1. Noticeably, 12 of the 15 residues were found as common to the binding residues of the reference (PDB ID: 4ZAM). The RMSD values plotted against the simulation time showed that nearby 11 ns, equilibrium was reached and, thenceforth, the 'SHV-1-Top ligand' complex remained typically stable. Starting from around 11 ns and straight to 101 ns, the backbone RMSD fluctuations were found to be confined inside a range of 1.0-1.6 Å. The ligand, 1,1'-(4H,8H-Bis[1,2,5]oxadiazolo[3,4-b:3',4'-e]pyrazine-4,8-diyl)diethanone, satisfied ADMET criteria. Furthermore, the practicability of the described 'SHV-1-Top ligand' complex was reinforced by a comprehensive molecular dynamics simulation of 101 ns. This ligand hence can be considered a promising lead for antibiotic design against SHV-1 producing resistant bacteria, and thus warrants wet laboratory evaluation.

6.
J Biomol Struct Dyn ; 41(17): 8362-8372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36224195

RESUMEN

A 'Thumb Rule for Antibiotic Design' against bacteria can be given as, 'The minimum pace of drug design ought to match the swiftness with which bacteria display cutting-edge resistance mechanisms; thereby outwitting the antibiotics and, in turn, the researchers'. Occurrence of drug resistance attributable to CXTM-variants in bacterial pathogens is widespread. In line with our above proposed thumb rule, the present article employed concatenation of virtual screening, docking and simulation to identify a potent in silico validated anti-CTXM-14 ligand. Specifically, this research used the 'MCULE' drug discovery platform to screen a total of 5 million candidate inhibitors to evaluate their binding efficacy with an antibiotic resistance enzyme, CTXM-14 found in bacterial pathogens. A new median approach between 'structure' and 'ligand'-based protocols was employed. Pharmacokinetic profiling was achieved by 'SWISS ADME'. Safety profile for humans was appraised by 'Toxicity Checker'. The complex consisting of the 'Top ligand' (obtained from the screen) harbored within the active pocket of the bacterial CTXM-14 was subjected to 60 ns molecular dynamics simulation with the aid of licensed YASARA STRUCTURE v.21.8.27. Complex tasks were performed by YANACONDA. Fine resolution figures (notably, plots generated from trajectory analyses) were constructed. Simulation snaps were acquired at every 250 picoseconds of the run. The ligand having the IUPAC name as 1-Amino-3-(4-hydroxyphenyl)pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile demonstrated the overall best binding with CTXM-14. Fifteen amino acid residues were found to line the interacting pocket. Remarkably, all of these interacting residues were found to be present among the interacting residues displayed by the reference complex as well, i.e. CTXM-14:Vaborbactam complex (PDB ID 6V7H). A total of 240 simulation snaps were retrieved. The RMSD plot revealed that a plateau was achieved at 32 ns, after which the backbone RMSD fluctuations remained confined within 1.4-2 Å. Video recording of molecular actions was also achieved. In conclusion, this study provides a fresh lead molecule, 1-Amino-3-(4-hydroxyphenyl)pyrido[1,2-a]benzimidazole-2,4-dicarbonitrile against bacterial CTXM-14 protein. The study utilized a new median approach between 'structure' and 'ligand'-based drug design. The lead molecule passed ADMET conditions and an array of medicinal chemistry filters, and is further supported by a stable molecular dynamics. An acceptable skin permeation supports its probable use in antibiotic creams. Moreover, the study provides a clear 'Thumb Rule for Antibiotic Design' against bacteria, which although often assumed, can be clearly stated for the first time. Synthesis of the screening-proposed molecule followed by in-vitro and in-vivo validation is highly recommended.Communicated by Ramaswamy H. Sarma.

7.
Arthritis Rheumatol ; 74(12): 2024-2031, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35762881

RESUMEN

OBJECTIVE: Cutaneous inflammation can signal disease in juvenile dermatomyositis (DM) and childhood-onset systemic lupus erythematosus (cSLE), but we do not fully understand cellular mechanisms of cutaneous inflammation. In this study, we used imaging mass cytometry to characterize cutaneous inflammatory cell populations and cell-cell interactions in juvenile DM as compared to cSLE. METHODS: We performed imaging mass cytometry analysis on skin biopsy samples from juvenile DM patients (n = 6) and cSLE patients (n = 4). Tissue slides were processed and incubated with metal-tagged antibodies for CD14, CD15, CD16, CD56, CD68, CD11c, HLA-DR, blood dendritic cell antigen 2, CD20, CD27, CD138, CD4, CD8, E-cadherin, CD31, pan-keratin, and type I collagen. Stained tissue was ablated, and raw data were acquired using the Hyperion imaging system. We utilized the Phenograph unsupervised clustering algorithm to determine cell marker expression and permutation test by histoCAT to perform neighborhood analysis. RESULTS: We identified 14 cell populations in juvenile DM and cSLE skin, including CD14+ and CD68+ macrophages, myeloid and plasmacytoid dendritic cells (pDCs), CD4+ and CD8+ T cells, and B cells. Overall, cSLE skin had a higher inflammatory cell infiltrate, with increased CD14+ macrophages, pDCs, and CD8+ T cells and immune cell-immune cell interactions. Juvenile DM skin displayed a stronger innate immune signature, with a higher overall percentage of CD14+ macrophages and prominent endothelial cell-immune cell interaction. CONCLUSION: Our findings identify immune cell population differences, including CD14+ macrophages, pDCs, and CD8+ T cells, in juvenile DM skin compared to cSLE skin, and highlight a predominant innate immune signature and endothelial cell-immune cell interaction in juvenile DM, providing insight into candidate cell populations and interactions to better understand disease-specific pathophysiology.


Asunto(s)
Dermatomiositis , Lupus Eritematoso Sistémico , Humanos , Niño , Dermatomiositis/metabolismo , Piel/patología , Lupus Eritematoso Sistémico/metabolismo , Comunicación Celular , Inmunidad Innata , Células Endoteliales/metabolismo , Citometría de Imagen , Inflamación/metabolismo
8.
Neurooncol Pract ; 9(3): 183-192, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35601974

RESUMEN

Background: This study analyzes sociodemographic barriers for primary CNS lymphoma (PCNSL) treatment and outcomes at a public safety-net hospital versus a private tertiary academic institution. We hypothesized that these barriers would lead to access disparities and poorer outcomes in the safety-net population. Methods: We reviewed records of PCNSL patients from 2007-2020 (n = 95) at a public safety-net hospital (n = 33) and a private academic center (n = 62) staffed by the same university. Demographics, treatment patterns, and outcomes were analyzed. Results: Patients at the safety-net hospital were significantly younger, more commonly Black or Hispanic, and had a higher prevalence of HIV/AIDS. They were significantly less likely to receive induction chemotherapy (67% vs 86%, P = .003) or consolidation autologous stem cell transplantation (0% vs. 47%, P = .001), but received more whole-brain radiation therapy (35% vs 16%, P = .001). Younger age and receiving any consolidation therapy were associated with improved progression-free (PFS, P = .001) and overall survival (OS, P = .001). Hospital location had no statistical impact on PFS (P = .725) or OS (P = .226) on an age-adjusted analysis. Conclusions: Our study shows significant differences in treatment patterns for PCNSL between a public safety-net hospital and an academic cancer center. A significant survival difference was not demonstrated, which is likely multifactorial, but likely was positively impacted by the shared multidisciplinary care delivery between the institutions. As personalized therapies for PCNSL are being developed, equitable access including clinical trials should be advocated for resource-limited settings.

9.
Sci Transl Med ; 14(642): eabn2263, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35476593

RESUMEN

Cutaneous lupus erythematosus (CLE) is a disfiguring and poorly understood condition frequently associated with systemic lupus. Previous studies suggest that nonlesional keratinocytes play a role in disease predisposition, but this has not been investigated in a comprehensive manner or in the context of other cell populations. To investigate CLE immunopathogenesis, normal-appearing skin, lesional skin, and circulating immune cells from lupus patients were analyzed via integrated single-cell RNA sequencing and spatial RNA sequencing. We demonstrate that normal-appearing skin of patients with lupus represents a type I interferon-rich, prelesional environment that skews gene transcription in all major skin cell types and markedly distorts predicted cell-cell communication networks. We also show that lupus-enriched CD16+ dendritic cells undergo robust interferon education in the skin, thereby gaining proinflammatory phenotypes. Together, our data provide a comprehensive characterization of lesional and nonlesional skin in lupus and suggest a role for skin education of CD16+ dendritic cells in CLE pathogenesis.


Asunto(s)
Interferón Tipo I , Lupus Eritematoso Cutáneo , Humanos , Inflamación/patología , Interferón Tipo I/metabolismo , Queratinocitos/patología , Células Mieloides/metabolismo
10.
Front Immunol ; 12: 775353, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868043

RESUMEN

Cutaneous lupus erythematosus (CLE) is a chronic inflammatory skin disease characterized by a diverse cadre of clinical presentations. CLE commonly occurs in patients with systemic lupus erythematosus (SLE), and CLE can also develop in the absence of systemic disease. Although CLE is a complex and heterogeneous disease, several studies have identified common signaling pathways, including those of type I interferons (IFNs), that play a key role in driving cutaneous inflammation across all CLE subsets. However, discriminating factors that drive different phenotypes of skin lesions remain to be determined. Thus, we sought to understand the skin-associated cellular and transcriptional differences in CLE subsets and how the different types of cutaneous inflammation relate to the presence of systemic lupus disease. In this study, we utilized two distinct cohorts comprising a total of 150 CLE lesional biopsies to compare discoid lupus erythematosus (DLE), subacute cutaneous lupus erythematosus (SCLE), and acute cutaneous lupus erythematosus (ACLE) in patients with and without associated SLE. Using an unbiased approach, we demonstrated a CLE subtype-dependent gradient of B cell enrichment in the skin, with DLE lesions harboring a more dominant skin B cell transcriptional signature and enrichment of B cells on immunostaining compared to ACLE and SCLE. Additionally, we observed a significant increase in B cell signatures in the lesional skin from patients with isolated CLE compared with similar lesions from patients with systemic lupus. This trend was driven primarily by differences in the DLE subgroup. Our work thus shows that skin-associated B cell responses distinguish CLE subtypes in patients with and without associated SLE, suggesting that B cell function in skin may be an important link between cutaneous lupus and systemic disease activity.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Biomarcadores , Susceptibilidad a Enfermedades , Lupus Eritematoso Cutáneo/etiología , Lupus Eritematoso Cutáneo/metabolismo , Lupus Eritematoso Sistémico/etiología , Lupus Eritematoso Sistémico/metabolismo , Biología Computacional/métodos , Diagnóstico Diferencial , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Inmunoglobulinas/genética , Inmunohistoquímica , Lupus Eritematoso Cutáneo/diagnóstico , Lupus Eritematoso Sistémico/diagnóstico
11.
Antibiotics (Basel) ; 10(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919115

RESUMEN

BACKGROUND: Multidrug resistant bacteria are a major therapeutic challenge. CTX-M-type enzymes are an important group of class A extended-spectrum ß-lactamases (ESBLs). ESBLs are the enzymes that arm bacterial pathogens with drug resistance to an array of antibiotics, notably the advanced-generation cephalosporins. The current need for an effective CTX-M-inhibitor is high. OBJECTIVE: The aim of the current study was to identify a promising anti-CTX-M-15 ligand whose chemical skeleton could be used as a 'seed-molecule' for future drug design against resistant bacteria. METHODS: Virtual screening of 5,000,000 test molecules was performed by 'MCULE Drug Discovery Platform'. 'ADME analyses' was performed by 'SWISS ADME'. TOXICITY CHECKER of MCULE was employed to predict the safety profile of the test molecules. The complex of the 'Top inhibitor' with the 'bacterial CTX-M-15 enzyme' was subjected to 102.25 ns molecular dynamics simulation. This simulation was run for 3 days on a HP ZR30w workstation. Trajectory analyses were performed by employing the macro 'md_analyze.mcr' of YASARA STRUCTURE version 20.12.24.W.64 using AMBER14 force field. YANACONDA macro language was used for complex tasks. Figures, including RMSD and RMSF plots, were generated. Snapshots were acquired after every 250 ps. Finally, two short videos of '41 s' and '1 min and 22 s' duration were recorded. RESULTS: 5-Amino-1-(2H-[1,2,4]triazino[5,6-b]indol-3-yl)-1H-pyrazole-4-carbonitrile, denoted by the MCULE-1352214421-0-56, displayed the most efficient binding with bacterial CTX-M-15 enzyme. This screened molecule significantly interacted with CTX-M-15 via 13 amino acid residues. Notably, nine amino acid residues were found common to avibactam binding (the reference ligand). Trajectory analysis yielded 410 snapshots. The RMSD plot revealed that around 26 ns, equilibrium was achieved and, thereafter, the complex remained reasonably stable. After a duration of 26 ns and onwards until 102.25 ns, the backbone RMSD fluctuations were found to be confined within a range of 0.8-1.4 Å. CONCLUSION: 5-Amino-1-(2H-[1,2,4]triazino[5,6-b]indol-3-yl)-1H-pyrazole-4-carbonitrile could emerge as a promising seed molecule for CTX-M-15-inhibitor design. It satisfied ADMET features and displayed encouraging 'simulation results'. Advanced plots obtained by trajectory analyses predicted the stability of the proposed protein-ligand complex. 'Hands on' wet laboratory validation is warranted.

12.
Pharmaceutics ; 13(1)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430162

RESUMEN

In the present study, the objective was to attain a localized lung delivery of an anti-tubercular fluoroquinolone, moxifloxacin (MXF), targeting the alveolar macrophages through a non-invasive pulmonary route using inhalable microspheres as a dry powder inhaler approach. MXF-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres (MXF-PLGA-MSs) were fabricated by solvent evaporation technique and optimized by using a central composite statistical design. The morphology and particle size, as well as the flowability of the optimized microspheres, were characterized. In addition, the aerosolization performance of the optimized formula was inspected using an Andersen cascade impactor. Furthermore, in vivo fate following intrapulmonary administration of the optimized formula was evaluated. The optimized MXF-PLGA-MSs were spherical in shape with a particle size of 3.16 µm, drug loading of 21.98% and entrapment efficiency of 78.0%. The optimized formula showed a mass median aerodynamic diameter (MMAD) of 2.85 ± 1.04 µm with a favorable fine particle fraction of 72.77 ± 1.73%, suggesting that the powders were suitable for inhalation. Most importantly, in vivo studies revealed that optimized MXF-PLGA-MSs preferentially accumulated in lung tissue as manifested by a two-fold increase in the area under the curve AUC0-24h, compared to plain drug. In addition, optimized MXF-PLGA-MS sustained drug residence in the lung for up to 24 h following inhalation, compared to plain drug. In conclusion, inhalable microspheres of MXF could be a promising therapeutic approach that might aid in the effective eradiation of tuberculosis along with improving patient adherence to the treatment.

13.
Drug Des Devel Ther ; 14: 5325-5336, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293794

RESUMEN

PURPOSE: The present work aimed at challenging the efficacy of natural gums, karaya and locust bean gum, as matrix-forming polymers for the formulation of sustained-release tablets of diltiazem, a model drug. METHODS: Central design composite was adopted for the formulation and optimization of tablet formulations. The two gums have been selected as independent variables. The dependent factors chosen were the amount of drug released in 1st hour (Y1), amount of drug released after 12 h (Y2), diffusion exponent (Y3), and time for half of the total drug released (T50%) (Y4). Wet granulation approach was used for the formulation of tablets. FT-IR, DSC, in vitro dissolution, swelling-erosion investigations, SEM, and stability studies were carried out. RESULTS AND DISCUSSION: It was evident that the release pattern from the prepared formulations was significantly influenced by the quantity of gum(s) in the tablet. FT-IR and DSC results confirm drug-polymer compatibility. Polynomial equations were used for the prediction of quantitative impact of independent factors at different levels on response variables. After ANOVA analysis, the significant factors were considered for constrained optimization to get the optimized formula. The optimized formula generated by the response surface methodology was evaluated both for in vitro and in vivo properties. The optimized formula and a sustained-release marketed product were subjected to in vivo studies in rabbits and the results of the t-test demonstrated insignificant variation in pharmacokinetic parameters among the two formulations, confirming that the prepared tablet showed sustained-release profile. CONCLUSION: The results indicated that karaya and locust bean gum can be effectively used to formulate sustained-release tablets.


Asunto(s)
Antihipertensivos/farmacocinética , Productos Biológicos/química , Diltiazem/farmacocinética , Galactanos/química , Mananos/química , Gomas de Plantas/química , Polímeros/química , Sterculia/química , Animales , Antihipertensivos/química , Diltiazem/química , Liberación de Fármacos , Conejos , Propiedades de Superficie , Comprimidos
14.
JCI Insight ; 5(19)2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32853177

RESUMEN

Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease characterized by chronic abscess formation and development of multiple draining sinus tracts in the groin, axillae, and perineum. Using proteomic and transcriptomic approaches, we characterized the inflammatory responses in HS in depth, revealing immune responses centered on IFN-γ, IL-36, and TNF, with lesser contribution from IL-17A. We further identified B cells and plasma cells, with associated increases in immunoglobulin production and complement activation, as pivotal players in HS pathogenesis, with Bruton's tyrosine kinase (BTK) and spleen tyrosine kinase (SYK) pathway activation as a central signal transduction network in HS. These data provide preclinical evidence to accelerate the path toward clinical trials targeting BTK and SYK signaling in moderate-to-severe HS.


Asunto(s)
Linfocitos B/inmunología , Biomarcadores/análisis , Regulación de la Expresión Génica , Hidradenitis Supurativa/patología , Células Plasmáticas/inmunología , Proteoma/metabolismo , Transcriptoma , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Linfocitos B/metabolismo , Linfocitos B/patología , Estudios de Casos y Controles , Redes Reguladoras de Genes , Hidradenitis Supurativa/genética , Hidradenitis Supurativa/inmunología , Hidradenitis Supurativa/metabolismo , Humanos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Proteoma/análisis , Transducción de Señal , Análisis de la Célula Individual , Quinasa Syk/genética , Quinasa Syk/metabolismo
15.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32758418

RESUMEN

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Asunto(s)
Colitis/patología , Enterobacter/fisiología , Microbioma Gastrointestinal , Klebsiella/fisiología , Boca/microbiología , Animales , Colitis/microbiología , Colon/microbiología , Colon/patología , Modelos Animales de Enfermedad , Enterobacter/aislamiento & purificación , Femenino , Inflamasomas/metabolismo , Interleucina-10/deficiencia , Interleucina-10/genética , Interleucina-1beta/metabolismo , Klebsiella/aislamiento & purificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Periodontitis/microbiología , Periodontitis/patología , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo
16.
ACS Synth Biol ; 9(8): 2119-2131, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32603587

RESUMEN

The complexities of pathway engineering necessitate screening libraries to discover phenotypes of interest. However, this approach is challenging when desirable phenotypes cannot be directly linked to growth advantages or fluorescence. In these cases, the ability to rapidly quantify intracellular proteins in the pathway of interest is critical to expedite the clonal selection process. While Saccharomyces cerevisiae remains a common host for pathway engineering, current approaches for intracellular protein detection in yeast either have low throughput, can interfere with protein function, or lack the ability to detect multiple proteins simultaneously. To fill this need, we developed yeast intracellular staining (yICS) that enables fluorescent antibodies to access intracellular compartments of yeast cells while maintaining their cellular integrity for analysis by flow cytometry. Using the housekeeping proteins ß actin and glyceraldehyde 3-phophate dehydrogenase (GAPDH) as targets for yICS, we demonstrated for the first time successful antibody-based flow cytometric detection of yeast intracellular proteins with no modification. Further, yICS characterization of a recombinant d-xylose assimilation pathway showed 3-plexed, quantitative detection of the xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) enzymes each fused with a small (6-10 amino acids) tag, revealing distinct enzyme expression profiles between plasmid-based and genome-integrated expression approaches. As a result of its high-throughput and quantitative capability, yICS enabled rapid screening of a library created from CRISPR-mediated XDH integration into the yeast δ site, identifying rare (1%) clones that led to an 8.4-fold increase in XDH activity. These results demonstrate the utility of yICS for greatly accelerating pathway engineering efforts, as well as any application where the high-throughput and quantitative detection of intracellular proteins is desired.


Asunto(s)
Citometría de Flujo , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Actinas/análisis , Actinas/metabolismo , Aldehído Reductasa/análisis , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Anticuerpos/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , D-Xilulosa Reductasa/análisis , D-Xilulosa Reductasa/genética , D-Xilulosa Reductasa/metabolismo , Edición Génica , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/análisis , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/inmunología , Gliceraldehído 3-Fosfato Deshidrogenasa (NADP+)/metabolismo , Espacio Intracelular/metabolismo , Ingeniería Metabólica , Proteínas de Saccharomyces cerevisiae/inmunología , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloración y Etiquetado
17.
J Bacteriol ; 202(8)2020 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-31988079

RESUMEN

A critical step in intracellular Chlamydia infection is the production of infectious progeny through the expression of late genes. This differentiation step involves conversion from a reticulate body (RB), which is the replicating form of the bacterium, into an elementary body (EB), which is the developmental form that spreads the infection to a new host cell. EUO is an important chlamydial transcription factor that controls the expression of late genes, but the mechanisms that regulate EUO are not known. We report that a plasmid-encoded protein, Pgp4, enhanced the repressor activity of EUO. Pgp4 did not function as a transcription factor because it did not bind or directly modulate transcription of its target promoters. Instead, Pgp4 increased the ability of EUO to bind and repress EUO-regulated promoters in vitro and physically interacted with EUO in pulldown assays with recombinant proteins. We detected earlier onset of EUO-dependent late gene expression by immunofluorescence microscopy in Pgp4-deficient C. trachomatis and C. muridarum strains. In addition, the absence of Pgp4 led to earlier onset of RB-to-EB conversion in C. muridarum These data support a role for Pgp4 as a negative regulator of chlamydial transcription that delays late gene expression. Our studies revealed that Pgp4 also has an EUO-independent function as a positive regulator of chlamydial transcription.IMPORTANCEChlamydia trachomatis is an important human pathogen that causes more than 150 million active cases of genital and eye infection in the world. This obligate intracellular bacterium produces infectious progeny within an infected human cell through the expression of late chlamydial genes. We showed that the ability of a key chlamydial transcription factor, EUO, to repress late genes was enhanced by a plasmid-encoded protein, Pgp4. In addition, studies with Chlamydia Pgp4-deficient strains provide evidence that Pgp4 delays late gene expression in infected cells. Thus, Pgp4 is a novel regulator of late gene expression in Chlamydia through its ability to enhance the repressor function of EUO.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydia trachomatis/metabolismo , Plásmidos/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Factores de Transcripción/genética
18.
Orthop J Sports Med ; 7(9): 2325967119867621, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31588409

RESUMEN

BACKGROUND: Arthroscopic capsular release has been shown to provide excellent short- and long-term outcomes in patients with idiopathic frozen shoulder. Some surgeons delay surgery in the belief that operating in the early stages of adhesive capsulitis results in a poorer prognosis. However, it is unclear which factors, particularly the stage of the disorder, affect the surgical outcome of this procedure. HYPOTHESIS: Patients who undergo capsular release during the early symptomatic stage of idiopathic adhesive capsulitis would have less improvement in range of motion compared with those who undergo surgery at a later stage. STUDY DESIGN: Cohort study; Level of evidence, 3. METHODS: A total of 189 shoulders with idiopathic adhesive capsulitis that underwent arthroscopic capsular release were evaluated. All patients completed a L'Insalata questionnaire and had their range of motion and strength tested prior to surgery and at 1, 6, and 12 weeks and 6 months post-capsular release. Post hoc, patients were grouped by whether they had symptoms lasting <10 months (shorter symptoms group; n = 131) or ≥10 months (longer symptoms group; n = 38). Multiple linear regression analysis was performed to determine which preoperative factors were independently associated with a favorable outcome. RESULTS: Patients in the shorter symptoms group were more restricted prior to surgery than were those in the longer symptoms group (mean ± SEM: external rotation, 17° ± 2° vs 27° ± 4° [P = .04]; abduction, 78° ± 3° vs 92° ± 6° [P = .04]; internal rotation, S3 ± 1 vs S1 ± 1 [P = .03]). The shorter symptoms group had greater postoperative improvement in internal rotation (from S3 ± 1 preoperatively to T12 ± 1 vertebral levels) compared with the longer symptoms cohort (from S1 ± 1 to L2 ± 1) (P = .02). CONCLUSION: Patients with a frozen shoulder and a duration of symptoms <10 months made greater improvements in internal rotation and had similar final results for flexion, abduction, and external rotation following arthroscopic capsular release when compared with patients who had a longer duration of symptoms, so there is no reason to delay surgery.

19.
ACS Synth Biol ; 8(10): 2303-2314, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31487465

RESUMEN

To provide broader protection and eliminate the need for annual update of influenza vaccines, biomolecular engineering of influenza virus-like particles (VLPs) to display more conserved influenza proteins such as the matrix protein M2 has been explored. However, achieving high surface density of full-length M2 in influenza VLPs has been left unrealized. In this study, we show that the ion channel activity of M2 induces significant cytopathic effects in Spodoptera frugiperda (Sf9) insect cells when expressed using M2-encoding baculovirus. These effects include altered Sf9 cell morphology and reduced baculovirus replication, resulting in impaired influenza protein expression and thus VLP production. On the basis of the function of M2, we hypothesized that blocking its ion channel activity could potentially relieve these cytopathic effects, and thus restore influenza protein expression to improve VLP production. The use of the M2 inhibitor amantadine indeed improves Sf9 cellular expression not only of M2 (∼3-fold), but also of hemagglutinin (HA) (∼7-fold) and of matrix protein M1 (∼3-fold) when coexpressed to produce influenza VLPs. This increased cellular expression of all three influenza proteins further leads to ∼2-fold greater VLP yield. More importantly, the quality of the resulting influenza VLPs is significantly improved, as demonstrated by the ∼2-fold, ∼50-fold, and ∼2-fold increase in the antigen density to approximately 53 HA, 48 M1, and 156 M2 per influenza VLP, respectively. Taken together, this study represents a novel approach to enable the efficient incorporation of full-length M2 while enhancing both the yield and quality of influenza VLPs produced by Sf9 cells.


Asunto(s)
Insectos/virología , Orthomyxoviridae/metabolismo , Proteínas de la Matriz Viral/metabolismo , Animales , Anticuerpos Antivirales/inmunología , Baculoviridae/inmunología , Baculoviridae/metabolismo , Línea Celular , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Insectos/inmunología , Orthomyxoviridae/inmunología , Células Sf9 , Proteínas de la Matriz Viral/inmunología
20.
Curr Pharm Des ; 25(27): 2989-2995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31368868

RESUMEN

BACKGROUND: Aggregation of Amyloid ß (Aß) peptide is a crucial feature of Alzheimer disease (AD) pathogenesis. In fact, Aß peptides are misfolded and aggregated to frame Amyloid fibrils, which is considered as one of the major contributing events in the onset of AD. All these observations have prompted the researchers to design therapeutic molecules with robust anti-Aß aggregation potential. Interestingly, in the last few decades, drug repurposing has turned into a fruitful and savvy approach for the treatment of several diseases. Bexarotene is an anticancer drug that has been under consideration for its ability to suppress Aß-peptide aggregation. However, the exact mechanistic aspect of suppression of Aß-peptide accumulation has not yet been completely revealed. METHODS: In the present study, we have attempted to decipher the mechanistic aspects of the anti-aggregation potential of bexarotene by using the computational biology approach. RESULTS: We have observed the effect of 'Aß-bexarotene' interaction on the aggregation ability of the Aß-peptide and decoded the involvement of receptor for advanced glycation end products (RAGE) and beta-secretase (BACE-1). A deep structural analysis of Aß upon binding with bexarotene revealed critical binding sites and structural twists involved in Aß aggregation. It is evident from the present that bexarotene could significantly restrain the process of primary nucleation of Aß. In addition, bexarotene showed a strong interaction with RAGE and BACE-1, suggesting them as plausible targets for the neuro-therapeutic action of bexarotene. CONCLUSION: Hence, we could safely suggest that bexarotene is a potent drug candidate that could reduce Aß- peptide aggregation by applying different mechanistic pathways. These results might boost the portfolio of pharmaceutical companies looking for the development of new chemical entities against AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/antagonistas & inhibidores , Bexaroteno/farmacología , Reposicionamiento de Medicamentos , Antineoplásicos/farmacología , Humanos , Fragmentos de Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...