Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Chem ; 12: 1352009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435669

RESUMEN

Glioblastoma multiforme (GBM) is regarded as the most aggressive form of brain tumor delineated by high cellular heterogeneity; it is resistant to conventional therapeutic regimens. In this study, the anti-cancer potential of garcinol, a naturally derived benzophenone, was assessed against GBM. During the analysis, we observed a reduction in the viability of rat glioblastoma C6 cells at a concentration of 30 µM of the extract (p < 0.001). Exposure to garcinol also induced nuclear fragmentation and condensation, as evidenced by DAPI-stained photomicrographs of C6 cells. The dissipation of mitochondrial membrane potential in a dose-dependent fashion was linked to the activation of caspases. Furthermore, it was observed that garcinol mediated the inhibition of NF-κB (p < 0.001) and decreased the expression of genes associated with cell survival (Bcl-XL, Bcl-2, and survivin) and proliferation (cyclin D1). Moreover, garcinol showed interaction with NF-κB through some important amino acid residues, such as Pro275, Trp258, Glu225, and Gly259 during molecular docking analysis. Comparative analysis with positive control (temozolomide) was also performed. We found that garcinol induced apoptotic cell death via inhibiting NF-κB activity in C6 cells, thus implicating it as a plausible therapeutic agent for GBM.

2.
Brain Sci ; 14(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38391759

RESUMEN

Pediatric brain tumors are the major cause of pediatric cancer mortality. They comprise a diverse group of tumors with different developmental origins, genetic profiles, therapeutic options, and outcomes. Despite many technological advancements, the treatment of pediatric brain cancers has remained a challenge. Treatment options for pediatric brain cancers have been ineffective due to non-specificity, inability to cross the blood-brain barrier, and causing off-target side effects. In recent years, nanotechnological advancements in the medical field have proven to be effective in curing challenging cancers like brain tumors. Moreover, nanoparticles have emerged successfully, particularly in carrying larger payloads, as well as their stability, safety, and efficacy monitoring. In the present review, we will emphasize pediatric brain cancers, barriers to treating these cancers, and novel treatment options.

3.
Biomolecules ; 13(11)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-38002295

RESUMEN

Neurodegenerative disorders, such as Alzheimer's disease (AD), negatively affect the economic and psychological system. For AD, there is still a lack of disease-altering treatments and promising cures due to its complex pathophysiology. In this study, we computationally screened the natural database of fungal metabolites against three known therapeutic target proteins of AD. Initially, a pharmacophore-based, drug-likeness category was employed for screening, and it filtered the 14 (A-N) best hits out of 17,544 fungal metabolites. The 14 best hits were docked individually against GSK-3ß, the NMDA receptor, and BACE-1 to investigate the potential of finding a multitarget inhibitor. We found that compounds B, F, and L were immuno-toxic, whereas E, H, I, and J had a higher LD50 dose (5000 mg/kg). Among the examined metabolites, the Bisacremine-C (compound I) was found to be the most active molecule against GSK-3ß (ΔG: -8.7 ± 0.2 Kcal/mol, Ki: 2.4 × 106 M-1), NMDA (ΔG: -9.5 ± 0.1 Kcal/mol, Ki: 9.2 × 106 M-1), and BACE-1 (ΔG: -9.1 ± 0.2 Kcal/mol, Ki: 4.7 × 106 M-1). It showed a 25-fold higher affinity with GSK-3ß, 6.3-fold higher affinity with NMDA, and 9.04-fold higher affinity with BACE-1 than their native ligands, respectively. Molecular dynamic simulation parameters, such as RMSD, RMSF, Rg, and SASA, all confirmed that the overall structures of the targeted enzymes did not change significantly after binding with Bisacremine-C, and the ligand remained inside the binding cavity in a stable conformation for most of the simulation time. The most significant hydrophobic contacts for the GSK-3ß-Bisacremine-C complex are with ILE62, VAL70, ALA83, and LEU188, whereas GLN185 is significant for H-bonds. In terms of hydrophobic contacts, TYR184 and PHE246 are the most important, while SER180 is vital for H-bonds in NMDA-Bisacremine-C. THR232 is the most crucial for H-bonds in BACE-1-Bisacremine-C and ILE110-produced hydrophobic contacts. This study laid a foundation for further experimental validation and clinical trials regarding the biopotency of Bisacremine-C.


Asunto(s)
Enfermedad de Alzheimer , N-Metilaspartato , Humanos , Simulación del Acoplamiento Molecular , Glucógeno Sintasa Quinasa 3 beta/metabolismo , N-Metilaspartato/uso terapéutico , Farmacóforo , Enfermedad de Alzheimer/metabolismo , Simulación de Dinámica Molecular , Ligandos
4.
Nanomaterials (Basel) ; 13(14)2023 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-37513094

RESUMEN

The present study applied a nano-synergistic approach to enhance besifloxacin's potency via nano-formulating besifloxacin on gold nanoparticles (Besi-AuNPs) and adding quercetin as a natural synergistic compound. In fact, a one-pot AuNP synthesis approach was applied for the generation of Besi-AuNPs, where besifloxacin itself acted as a reducing and capping agent. Characterization of Besi-AuNPs was performed by spectrophotometry, DLS, FTIR, and electron microscopy techniques. Moreover, antibacterial assessment of pure besifloxacin, Besi-AuNPs, and their combinations with quercetin were performed on Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. UV-spectra showed a peak of AuNPs at 526 nm, and the electron microscopy-based size was estimated to be 15 ± 3 nm. The effective MIC50 concentrations of besifloxacin after loading on AuNPs were reduced by approximately 50% against the tested bacterial strains. Interestingly, adding quercetin to Besi-AuNPs further enhanced their antibacterial potency, and isobologram analysis showed synergistic potential (combination index below 1) for different quercetin and Besi-AuNP combinations. However, Besi-AuNPs and quercetin combinations were most effective against Gram-positive S. aureus in comparison to Gram-negative P. aeruginosa and E. coli. Their potent activity against S. aureus has its own clinical significance, as it is one the main causative agents of ocular infection, and besifloxacin is primarily used for treating infectious eye diseases. Thus, the outcomes of the present study could be explored further to provide better medication for eye infections caused by resistant pathogens.

5.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37259378

RESUMEN

Among the various types of cancer, lung cancer accounts for the highest number of fatalities across the globe. A combination of different cancer chemotherapeutics is regarded as an effective strategy for clinical management of different cancers. Ganetespib (GAN) is a well-established hsp90 inhibitor with enhanced pharmacological properties in comparison with its first-generation counterparts. Previous preclinical studies have shown that GAN exerts significant effects against cancer cells; however, its therapeutic effects against non-small cell lung cancer (NSCLC) A549 cells, achieved by modulating the expression of the NF-κB/p65 signaling pathway, remains unexplored. In this study, the combinatorial effect of GAN and methotrexate (MTX) against lung carcinomas was investigated through both in silico and in vitro studies. A combinatorial treatment regimen of GAN/MTX exerted more significant cytotoxic effects (p < 0.001) against A549 cells than individual treatments. The GAN/MTX combination also instigated nuclear fragmentation followed by augmentation in intracellular ROS levels (p < 0.001). The elevated ROS in A549 cells upon exposure to GAN/MTX combinatorial regimen was concomitantly accompanied with a remarkable reduction in mitochondrial viability. In addition, it was observed that the GAN/MTX combination succeeded in elevating caspase-3 activity and downregulating the expression levels of anti-apoptotic mediators Bcl2 and survivin in NSCLC A549 cells. Most importantly, the GAN/MTX combinatorial regimen impeded the activation of the NF-kB/p65 signaling pathway via repression of the expression of E-cadherin and N-cadherin, which was confirmed by molecular docking studies. Collectively, these findings demonstrated the synergistic effect of the GAN/MTX combinatorial regimen in suppressing the growth of A549 cells by modulating the NF-κB/p65 signaling pathway.

6.
Antibiotics (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978327

RESUMEN

Enterococci are troublesome nosocomial, opportunistic Gram-positive cocci bacteria showing enhanced resistance to many commonly used antibiotics. This study aims to investigate the prevalence and genetic basis of antibiotic resistance to macrolides, lincosamides, and streptogramins (MLS) in Enterococci, as well as the correlation between MLS resistance and biocide resistance. From 913 clinical isolates collected from King Khalid Hospital, Hail, Saudi Arabia, 131 isolates were identified as Enterococci spp. The susceptibility of the clinical enterococcal isolates to several MLS antibiotics was determined, and the resistance phenotype was detected by the triple disk method. The MLS-involved resistance genes were screened in the resistant isolates. The current results showed high resistance rates to MLS antibiotics, and the constitutive resistance to all MLS (cMLS) was the most prevalent phenotype, observed in 76.8% of resistant isolates. By screening the MLS resistance-encoding genes in the resistant isolates, the erythromycin ribosome methylase (erm) genes that are responsible for methylation of bacterial 23S rRNA were the most detected genes, in particular, ermB. The ereA esterase-encoding gene was the most detected MLS modifying-encoding genes, more than lnuA (adenylation) and mphC (phosphorylation). The minimum inhibitory concentrations (MICs) of commonly used biocides were detected in resistant isolates and correlated with the MICs of MLS antibiotics. The present findings showed a significant correlation between MLS resistance and reduced susceptibility to biocides. In compliance with the high incidence of the efflux-encoding genes, especially mefA and mefE genes in the tolerant isolates with higher MICs to both MLS antibiotics and biocides, the efflux of resistant isolates was quantified, and there was a significant increase in the efflux of resistant isolates with higher MICs as compared to those with lower MICs. This could explain the crucial role of efflux in developing cross-resistance to both MLS antibiotics and biocides.

7.
Pharmaceutics ; 15(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36839753

RESUMEN

The advent of new antibiotics has helped clinicians to control severe bacterial infections. Despite this, inappropriate and redundant use of antibiotics, inadequate diagnosis, and smart resistant mechanisms developed by pathogens sometimes lead to the failure of treatment strategies. The genotypic analysis of clinical samples revealed that the rapid spread of extended-spectrum ß-lactamases (ESBLs) genes is one of the most common approaches acquired by bacterial pathogens to become resistant. The scenario compelled the researchers to prioritize the design and development of novel and effective therapeutic options. Nanotechnology has emerged as a plausible groundbreaking tool against resistant infectious pathogens. Numerous reports suggested that inorganic nanomaterials, specifically gold nanoparticles (AuNPs), have converted unresponsive antibiotics into potent ones against multi-drug resistant pathogenic strains. Interestingly, after almost two decades of exhaustive preclinical evaluations, AuNPs are gradually progressively moving ahead toward clinical evaluations. However, the mechanistic aspects of the antibacterial action of AuNPs remain an unsolved puzzle for the scientific fraternity. Thus, the review covers state-of-the-art investigations pertaining to the efficacy of AuNPs as a tool to overcome ESBLs acquired resistance, their applicability and toxicity perspectives, and the revelation of the most appropriate proposed mechanism of action. Conclusively, the trend suggested that antibiotic-loaded AuNPs could be developed into a promising interventional strategy to limit and overcome the concerns of antibiotic-resistance.

8.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770436

RESUMEN

Infections caused by resistant bacterial pathogens have increased the complications of clinicians worldwide. The quest for effective antibacterial agents against resistant pathogens has prompted researchers to develop new classes of antibiotics. Unfortunately, pathogens have acted more smartly by developing resistance to even the newest class of antibiotics with time. The culture sensitivity analysis of the clinical samples revealed that pathogens are gaining resistance toward the new generations of cephalosporins at a very fast rate globally. The current study developed gold nanoparticles (AuNPs) that could efficiently deliver the 2nd (cefotetan-CT) and 3rd (cefixime-CX) generation cephalosporins to resistant clinical pathogens. In fact, both CT and CX were used to reduce and stabilize AuNPs by applying a one-pot synthesis approach, and their characterization was performed via spectrophotometry, dynamic light scattering and electron microscopy. Moreover, the synthesized AuNPs were tested against uro-pathogenic resistant clinical strains of Escherichia coli and Klebsiella pneumoniae. CT-AuNPs characteristic SPR peak was observed at 542 nm, and CX-AuNPs showed the same at 522 nm. The stability measurement showed ζ potential as -24.9 mV and -25.2 mV for CT-AuNPs and CX-AuNPs, respectively. Scanning electron microscopy revealed the spherical shape of both the AuNPs, whereas, the size by transmission electron microscopy for CT-AuNPs and CX-AuNPs were estimated to be 45 ± 19 nm and 35 ± 17 nm, respectively. Importantly, once loaded onto AuNPs, both the cephalosporin antibiotics become extremely potent against the resistant strains of E. coli and K. pneumoniae with MIC50 in the range of 0.5 to 0.8 µg/mL. The findings propose that old-generation unresponsive antibiotics could be revived into potent nano-antibiotics via AuNPs. Thus, investing efforts, intellect, time and funds for a nano-antibiotic strategy might be a better approach to overcome resistance than investing the same in the development of newer antibiotic molecule(s).

9.
Life (Basel) ; 13(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36676100

RESUMEN

Urinary tract infections (UTIs) represent one of the most common infections that are frequently encountered in health care facilities. One of the main mechanisms used by bacteria that allows them to survive hostile environments is biofilm formation. Biofilms are closed bacterial communities that offer protection and safe hiding, allowing bacteria to evade host defenses and hide from the reach of antibiotics. Inside biofilm communities, bacteria show an increased rate of horizontal gene transfer and exchange of resistance and virulence genes. Additionally, bacterial communication within the biofilm allows them to orchestrate the expression of virulence genes, which further cements the infestation and increases the invasiveness of the infection. These facts stress the necessity of continuously updating our information and understanding of the etiology, pathogenesis, and eradication methods of this growing public health concern. This review seeks to understand the role of biofilm formation in recurrent urinary tact infections by outlining the mechanisms underlying biofilm formation in different uropathogens, in addition to shedding light on some biofilm eradication strategies.

10.
Front Pharmacol ; 14: 1325184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38348349

RESUMEN

At the molecular level, several developmental signaling pathways, such as Wnt/ß-catenin, have been associated with the initiation and subsequent progression of prostate carcinomas. The present report elucidated the anti-cancerous attributes of an anthraquinone, aloe-emodin (AE), against androgen-independent human prostate cancer DU145 cells. The cytotoxicity profiling of AE showed that it exerted significant cytotoxic effects and increased lactose dehydrogenase levels in DU145 cells (p < 0.01 and p < 0.001). AE also induced considerable reactive oxygen species (ROS)-mediated oxidative stress, which escalated at higher AE concentrations of 20 and 25 µM. AE also efficiently instigated nuclear fragmentation and condensation concomitantly, followed by the activation of caspase-3 and -9 within DU145 cells. AE further reduced the viability of mitochondria with increased cytosolic cytochrome-c levels (p < 0.01 and p < 0.001) in DU145 cells. Importantly, AE exposure was also correlated with reduced Wnt2 and ß-catenin mRNA levels along with their target genes, including cyclin D1 and c-myc. Furthermore, the molecular mechanism of AE was evaluated by performing molecular docking studies with Wnt2 and ß-catenin. Evidently, AE exhibited good binding energy scores toward Wnt2 and ß-catenin comparable with their respective standards, CCT036477 (Wnt2 inhibitor) and FH535 (ß-catenin inhibitor). Thus, it may be considered that AE was competent in exerting anti-growth effects against DU145 androgen-independent prostate cancer cells plausibly by modulating the expression of Wnt/ß-catenin signaling.

11.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36422540

RESUMEN

Breast cancer represents the most frequently occurring cancer globally among women. As per the recent report of the World Health Organization (WHO), it was documented that by the end of the year 2020, approximately 7.8 million females were positively diagnosed with breast cancer and in 2020 alone, 685,000 casualties were documented due to breast cancer. The use of standard chemotherapeutics includes the frontline treatment option for patients; however, the concomitant side effects represent a major obstacle for their usage. Carbazole alkaloids are one such group of naturally-occurring bioactive compounds belonging to the Rutaceae family. Among the various carbazole alkaloids, 3-Methoxy carbazole or C13H11NO (MHC) is obtained from Clausena heptaphylla as well as from Clausena indica. In this study, MHC was investigated for its anti-breast cancer activity based on molecular interactions with specific proteins related to breast cancer, where the MHC had predicted binding affinities for NF-κB with −8.3 kcal/mol. Furthermore, to evaluate the biological activity of MHC, we studied its in vitro cytotoxic effects on MCF-7 cells. This alkaloid showed significant inhibitory effects and induced apoptosis, as evidenced by enhanced caspase activities and the cellular generation of ROS. It was observed that a treatment with MHC inhibited the gene expression of NF-kB in MCF-7 breast cancer cells. These results suggest that MHC could be a promising medical plant for breast cancer treatment. Further studies are needed to understand the molecular mechanisms behind the anticancer action of MHC.

12.
Materials (Basel) ; 15(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36363283

RESUMEN

Inflammatory breast cancer (IBC) is one of the most belligerent types of breast cancer. While various modalities exist in managing/treating IBC, drug delivery using microneedles (MNs) is considered to be the most innovative method of localized delivery of anti-cancer agents. Localized drug delivery helps to treat IBC could limit their adverse reactions. MNs are nothing but small needle like structures that cause little or no pain at the site of administration for drug delivery via layers of the skin. The polyethylene glycol diacrylate (PEGDA) based MNs were fabricated by using three dimensional (3D) technology called Projection Micro-Stereo Lithography (PµSL). The fabricated microneedle patches (MNPs) were characterized and coated with a coating formulation comprising of gemcitabine and sodium carboxymethyl cellulose by a novel and inventive screen plate method. The drug coated MNPs were characterized by various instrumental methods of analysis and release profile studies were carried out using Franz diffusion cell. Coat-and-poke strategy was employed in administering the drug coated MNPs. Overall, the methods employed in the present study not only help in obtaining MNPs with accurate dimensions but also help in obtaining uniformly drug coated MNPs of gemcitabine for treatment of IBC. Most importantly, 100% drug release was achieved within the first one hour only.

13.
Nanomaterials (Basel) ; 12(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296833

RESUMEN

Gold nanoparticles have gained popularity as an effective drug delivery vehicle due to their unique features. In fact, antibiotics transported via gold nanoparticles have significantly enhanced their potency in the recent past. The present study used an approach to synthesize gold nanoparticles in one step with the help of cefoxitin antibiotic as a reducing and stabilizing agent. Cefoxitin is a second-generation cephalosporin that loses its potential due to modification in the porins (ompK35 and ompK36) of Gram-negative pathogens. Thus, the present study has developed an idea to revive the potential of cefoxitin against clinical Gram-negative pathogens, i.e., Escherichia coli and Klebsiella pneumoniae, via applying gold nanoparticles as a delivery tool. Prior to antibacterial activity, characterization of cefoxitin-gold nanoparticles was performed via UV-visible spectrophotometry, dynamic light scattering, and electron microscopy. A characteristic UV-visible scan peak for gold nanoparticles was observed at 518 nm, ζ potential was estimated as -23.6 ± 1.6, and TEM estimated the size in the range of 2-12 nm. Moreover, cefoxitin loading efficiency on gold nanoparticles was calculated to be 71.92%. The antibacterial assay revealed that cefoxitin, after loading onto the gold nanoparticles, become potent against cefoxitin-resistant E. coli and K. pneumoniae, and their MIC50 values were estimated as 1.5 µg/mL and 2.5 µg/mL, respectively. Here, gold nanoparticles effectively deliver cefoxitin to the resistant pathogens, and convert it from unresponsive to a potent antibiotic. However, to obtain some convincing conclusions on the human relevance, their fate and toxicity need to be evaluated.

14.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36297341

RESUMEN

Cucurbitacin-B (Cur-B) is an analogue triterpenoid belonging to the Cucurbitaceae family. Previous reports have explicitly outlined various biological activities of Cucurbitaceae family members, including the anticancer activity of Cur-B. In the present study, we tried to elucidate the anticancer efficacy of Cur-B against prostate cancer PC3 cells. PC3 cells were exposed to purified Cur-B at 5, 10, 15, 20 and 25 µM for 24. Cur-B exposure reduced cell viability of PC3 cells at 5 µM (p < 0.05), with further reduction with increased Cur-B concentration (15 µM, p < 0.01 and 25 µM, p < 0.001). Cur-B also succeeded in instigating nuclear fragmentation and condensation, followed by activation of caspase-8, -9 and -3 proportionally with increasing concentrations of Cur-B. Treatment with Cur-B also instigated ROS-mediated oxidative stress both qualitatively and quantitatively at 5 µM, p < 0.05; 15 µM, p < 0.01 and 25 µM, p < 0.001. Increased ROS after Cur-B treatment also led to dissipation of mitochondrial membrane potential, thereby resulting in considerable apoptosis (p < 0.001), which, again, was proportionally dependent on Cur-B concentration. Cur-B exposure to PC3 cells was concomitantly followed by reduced cyclin D1, cyclin-dependent kinase 4 (CDK4) expression and augmented mRNA expression of CDK inhibitor p21Cip1. Intriguingly, Cur-B exposure also led to considerable downregulation of the JAK/STAT signaling cascade, which may be the reason behind Cur-B-mediated apoptosis and cell cycle arrest within PC3 cells. Therefore, these observations explicitly establish that Cur-B could serve in the prevention of prostate cancer.

15.
Materials (Basel) ; 15(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36013845

RESUMEN

New antibiotics are seen as 'drugs of last resort' against virulent bacteria. However, development of resistance towards new antibiotics with time is a universal fact. Delafloxacin (DFX) is a new fluoroquinolone antibiotic that differs from existing fluoroquinolones by the lack of a protonatable substituent, which gives the molecule a weakly acidic nature, affording it higher antibacterial activity under an acidic environment. Furthermore, antibiotic-functionalized metallic nanoparticles have been recently emerged as a feasible platform for conquering bacterial resistance. In the present study, therefore, we aimed at preparing DFX-gold nano-formulations to increase the antibacterial potential of DFX. To synthesize DFX-capped gold nanoparticles (DFX-AuNPs), DFX was used as a reducing and stabilizing/encapsulating agent. Various analytical techniques such as UV-visible spectroscopy, TEM, DLS, FTIR and zeta potential analysis were applied to determine the properties of the synthesized DFX-AuNPs. The synthesized DFX-AuNPs revealed a distinct surface plasmon resonance (SPR) band at 530 nm and an average size of 16 nm as manifested by TEM analysis. In addition, Zeta potential results (-19 mV) confirmed the stability of the synthesized DFX-AuNPs. Furthermore, FTIR analysis demonstrated that DFX was adsorbed onto the surface of AuNPs via strong interaction between AuNPs and DFX. Most importantly, comparative antibacterial analysis of DFX alone and DFX-AuNPs against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) verified the superior antibacterial activity of DFX-AuNPs against the tested microorganisms. To sum up, DFX gold nano-formulations can offer a promising possible solution, even at a lower antibiotic dose, to combat pathogenic bacteria.

16.
Entropy (Basel) ; 24(7)2022 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-35885104

RESUMEN

The association of COVID-19 with neurological complications is a well-known fact, and researchers are endeavoring to investigate the mechanistic perspectives behind it. SARS-CoV-2 can bind to Toll-like receptor 4 (TLR-4) that would eventually lead to α-synuclein aggregation in neurons and stimulation of neurodegeneration pathways. Olive leaves have been reported as a promising phytotherapy or co-therapy against COVID-19, and oleuropein is one of the major active components of olive leaves. In the current study, oleuropein was investigated against SARS-CoV-2 target (main protease 3CLpro), TLR-4 and Prolyl Oligopeptidases (POP), to explore oleuropein potency against the neurological complications associated with COVID-19. Docking experiments, docking validation, interaction analysis, and molecular dynamic simulation analysis were performed to provide insight into the binding pattern of oleuropein with the three target proteins. Interaction analysis revealed strong bonding between oleuropein and the active site amino acid residues of the target proteins. Results were further compared with positive control lopinavir (3CLpro), resatorvid (TLR-4), and berberine (POP). Moreover, molecular dynamic simulation was performed using YASARA structure tool, and AMBER14 force field was applied to examine an 100 ns trajectory run. For each target protein-oleuropein complex, RMSD, RoG, and total potential energy were estimated, and 400 snapshots were obtained after each 250 ps. Docking analyses showed binding energy as -7.8, -8.3, and -8.5 kcal/mol for oleuropein-3CLpro, oleuropein-TLR4, and oleuropein-POP interactions, respectively. Importantly, target protein-oleuropein complexes were stable during the 100 ns simulation run. However, an experimental in vitro study of the binding of oleuropein to the purified targets would be necessary to confirm the present study outcomes.

17.
Life (Basel) ; 12(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35888166

RESUMEN

The COVID-19 era has prompted several researchers to search for a linkage between COVID-19 and its associated neurological manifestation. Toll-like receptor 4 (TLR-4) acts as one such connecting link. spike protein of SARS-CoV-2 can bind either to ACE-2 receptors or to TLR-4 receptors, leading to aggregation of α-synuclein and neurodegeneration via the activation of various cascades in neurons. Recently, dithymoquinone has been reported as a potent multi-targeting candidate against SARS-CoV-2. Thus, in the present study, dithymoquinone and its six analogues were explored to target 3CLpro (main protease of SARS-CoV-2), TLR4 and PREP (Prolyl Oligopeptidases) by using the molecular docking and dynamics approach. Dithymoquinone (DTQ) analogues were designed in order to investigate the effect of different chemical groups on its bioactivity. It is noteworthy to mention that attention was given to the feasibility of synthesizing these analogues by a simple photo-dimerisation reaction. The DTQ analogue containing the 4-fluoroaniline moiety [Compound (4)] was selected for further analysis by molecular dynamics after screening via docking-interaction analyses. A YASARA structure tool built on the AMBER14 force field was used to analyze the 100 ns trajectory by taking 400 snapshots after every 250 ps. Moreover, RMSD, RoG, potential energy plots were successfully obtained for each interaction. Molecular docking results indicated strong interaction of compound (4) with 3CLpro, TLR4 and PREP with a binding energy of -8.5 kcal/mol, -10.8 kcal/mol and -9.5 kcal/mol, respectively, which is better than other DTQ-analogues and control compounds. In addition, compound (4) did not violate Lipinski's rule and showed no toxicity. Moreover, molecular dynamic analyses revealed that the complex of compound (4) with target proteins was stable during the 100 ns trajectory. Overall, the results predicted that compound (4) could be developed into a potent anti-COVID agent with the ability to mitigate neurological manifestations associated with COVID-19.

18.
Brain Sci ; 12(6)2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741655

RESUMEN

Calcium homeostasis modulator 1 (CALHM1) is a protein responsible for causing Alzheimer's disease. In the absence of an experimentally designed protein molecule, homology modelling was performed. Through homology modelling, different CALHM1 models were generated and validated through Rampage. To carry out further in silico studies, through molecular docking and molecular dynamics simulation experiments, various flavonoids and alkaloids from Bauhinia variegata were utilised as inhibitors to target the protein (CALHM1). The sequence of CALHM1 was retrieved from UniProt and the secondary structure prediction of CALHM1 was done through CFSSP, GOR4, and SOPMA methods. The structure was identified through LOMETS, MUSTER, and MODELLER and finally, the structures were validated through Rampage. Bauhinia variegata plant was used to check the interaction of alkaloids and flavonoids against CALHM1. The protein and protein-ligand complex were also validated through molecular dynamics simulations studies. The model generated through MODELLER software with 6VAM A was used because this model predicted the best results in the Ramachandran plot. Further molecular docking was performed, quercetin was found to be the most appropriate candidate for the protein molecule with the minimum binding energy of -12.45 kcal/mol and their ADME properties were analysed through Molsoft and Molinspiration. Molecular dynamics simulations showed that CALHM1 and CALHM1-quercetin complex became stable at 2500 ps. It may be seen through the study that quercetin may act as a good inhibitor for treatment. With the help of an in silico study, it was easier to analyse the 3D structure of the protein, which may be scrutinized for the best-predicted model. Quercetin may work as a good inhibitor for treating Alzheimer's disease, according to in silico research using molecular docking and molecular dynamics simulations, and future in vitro and in vivo analysis may confirm its effectiveness.

19.
Entropy (Basel) ; 24(5)2022 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-35626478

RESUMEN

Neurodegenerative disorders involve various pathophysiological pathways, and finding a solution for these issues is still an uphill task for the scientific community. In the present study, a combination of molecular docking and dynamics approaches was applied to target different pathways leading to neurodegenerative disorders such as Alzheimer's disease. Initially, abrineurin natural inducers were screened using physicochemical properties and toxicity assessment. Out of five screened compounds, a pentacyclic triterpenoid, i.e., Soyasapogenol B appeared to be the most promising after molecular docking and simulation analysis. Soyasapogenol B showed low TPSA (60.69), high absorption (82.6%), no Lipinski rule violation, and no toxicity. Docking interaction analysis revealed that Soyasapogenol B bound effectively to all of the targeted proteins (AChE, BuChE MAO-A, MAO-B, GSK3ß, and NMDA), in contrast to other screened abrineurin natural inducers and inhibitors. Importantly, Soyasapogenol B bound to active site residues of the targeted proteins in a similar pattern to the native ligand inhibitor. Further, 100 ns molecular dynamics simulations analysis showed that Soyasapogenol B formed stable complexes against all of the targeted proteins. RMSD analysis showed that the Soyasapogenol B-protein complex exhibited average RMSD values of 1.94 Å, 2.11 Å, 5.07 Å, 2.56 Å, 3.83 Å and 4.07 Å. Furthermore, the RMSF analysis and secondary structure analysis also indicated the stability of the Soyasapogenol B-protein complexes.

20.
Semin Cancer Biol ; 86(Pt 2): 645-663, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35405339

RESUMEN

Evident role of inflammation in cancer development and progression prompted the application of anti-inflammatory medications as a therapeutic strategy. The major bottleneck for the anti-inflammatory drugs is targeted delivery to the cancerous cell. Nanotechnology has provided safe and effective way for targeted cancer therapy. However, the complex and heterogeneous traits of cancer, incomplete information on fate and behavior of nanomedicines in human body, and lack of large-scale commercial production have slowed down the pace of nanomedicines development. To shift the paradigm from conventional cancer therapeutics to anti-inflammatory nano-therapeutics, thorough understanding of the strategies, progress, success, challenges and future perspectives are needed. The present review highlights all these aspects in addition to innovations patented on them. In fact, patent plays a vital role in protection of innovations, and further translation of lab-scale outcomes into bedside medications. Thus, the review introspects and recognizes the glitches in successful clinical translation of anti-inflammatory nanomedicines.


Asunto(s)
Nanomedicina , Neoplasias , Humanos , Sistemas de Liberación de Medicamentos , Nanotecnología , Neoplasias/tratamiento farmacológico , Inflamación/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...