Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ Comput Sci ; 10: e1914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660179

RESUMEN

Sugar in the blood can harm individuals and their vital organs, potentially leading to blindness, renal illness, as well as kidney and heart diseases. Globally, diabetic patients face an average annual mortality rate of 38%. This study employs Chi-square, mutual information, and sequential feature selection (SFS) to choose features for training multiple classifiers. These classifiers include an artificial neural network (ANN), a random forest (RF), a gradient boosting (GB) algorithm, Tab-Net, and a support vector machine (SVM). The goal is to predict the onset of diabetes at an earlier age. The classifier, developed based on the selected features, aims to enable early diagnosis of diabetes. The PIMA and early-risk diabetes datasets serve as test subjects for the developed system. The feature selection technique is then applied to focus on the most important and relevant features for model training. The experiment findings conclude that the ANN exhibited a spectacular performance in terms of accuracy on the PIMA dataset, achieving a remarkable accuracy rate of 99.35%. The second experiment, conducted on the early diabetes risk dataset using selected features, revealed that RF achieved an accuracy of 99.36%. Based on our experimental results, it can be concluded that our suggested method significantly outperformed baseline machine learning algorithms already employed for diabetes prediction on both datasets.

2.
Healthcare (Basel) ; 11(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37957985

RESUMEN

In recent times, there has been considerable focus on harnessing artificial intelligence (AI) for medical image analysis and healthcare purposes. In this study, we introduce CADFU (Computer-Aided Diagnosis System for Foot Ulcers), a pioneering diabetic foot ulcer diagnosis system. The primary objective of CADFU is to detect and segment ulcers and similar chronic wounds in medical images. To achieve this, we employ two distinct algorithms. Firstly, DHuNeT, an innovative Dual-Phase Hyperactive UNet, is utilized for the segmentation task. Second, we used YOLOv8 for the task of detecting wounds. The DHuNeT autoencoder, employed for the wound segmentation task, is the paper's primary and most significant contribution. DHuNeT is the combination of sequentially stacking two UNet autoencoders. The hyperactive information transmission from the first UNet to the second UNet is the key idea of DHuNeT. The first UNet feeds the second UNet the features it has learned, and the two UNets combine their learned features to create new, more accurate, and effective features. We achieve good performance measures, especially in terms of the Dice co-efficient and precision, with segmentation scores of 85% and 92.6%, respectively. We obtain a mean average precision (mAP) of 86% in the detection task. Future hospitals could quickly monitor patients' health using the proposed CADFU system, which would be beneficial for both patients and doctors.

3.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430549

RESUMEN

The intrinsic and liveness detection behavior of electrocardiogram (ECG) signals has made it an emerging biometric modality for the researcher with several applications including forensic, surveillance and security. The main challenge is the low recognition performance with datasets of large populations, including healthy and heart-disease patients, with a short interval of an ECG signal. This research proposes a novel method with the feature-level fusion of the discrete wavelet transform and a one-dimensional convolutional recurrent neural network (1D-CRNN). ECG signals were preprocessed by removing high-frequency powerline interference, followed by a low-pass filter with a cutoff frequency of 1.5 Hz for physiological noises and by baseline drift removal. The preprocessed signal is segmented with PQRST peaks, while the segmented signals are passed through Coiflets' 5 Discrete Wavelet Transform for conventional feature extraction. The 1D-CRNN with two long short-term memory (LSTM) layers followed by three 1D convolutional layers was applied for deep learning-based feature extraction. These combinations of features result in biometric recognition accuracies of 80.64%, 98.81% and 99.62% for the ECG-ID, MIT-BIH and NSR-DB datasets, respectively. At the same time, 98.24% is achieved when combining all of these datasets. This research also compares conventional feature extraction, deep learning-based feature extraction and a combination of these for performance enhancement, compared to transfer learning approaches such as VGG-19, ResNet-152 and Inception-v3 with a small segment of ECG data.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Humanos , Biometría , Aprendizaje Profundo , Análisis de Ondículas , Arritmias Cardíacas/diagnóstico
4.
ACS Omega ; 8(12): 10806-10821, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008158

RESUMEN

Drilling boreholes for the exploration of groundwater incurs high cost with potential risk of failures. However, borehole drilling should only be done in regions with a high probability of faster and easier access to water-bearing strata, so that groundwater resources can be effectively managed. However, regional strati-graphic uncertainties drive the decision of the optimal drilling location search. Unfortunately, due to the unavailability of a robust solution, most contemporary solutions rely on physical testing methods that are resource intensive. In this regard, a pilot study is conducted to determine the optimal borehole drilling location using a predictive optimization technique that takes strati-graphic uncertainties into account. The study is conducted in a localized region of the Republic of Korea using a real borehole data set. In this study we proposed an enhanced Firefly optimization algorithm based on an inertia weight approach to find an optimal location. The results of the classification and prediction model serve as an input to the optimization model to implement a well-crafted objective function. For predictive modeling a deep learning based chained multioutput prediction model is developed to predict groundwater-level and drilling depth. For classification of soil color and land-layer a weighted voting ensemble classification model based on Support Vector Machines, Gaussian Naïve Bayes, Random Forest, and Gradient Boosted Machine is developed. For weighted voting, an optimal set of weights is determined using a novel hybrid optimization algorithm. Experimental results validate the effectiveness of the proposed strategy. The proposed classification model achieved an accuracy of 93.45% and 95.34% for soil-color and land-layer, respectively. While the mean absolute error achieved by proposed prediction model for groundwater level and drilling depth is 2.89% and 3.11%, respectively. It is found that the proposed predictive optimization framework can adaptively determine the optimal borehole drilling locations for high strati-graphic uncertainty regions. The findings of the proposed study provide an opportunity to the drilling industry and groundwater boards to achieve sustainable resource management and optimal drilling performance.

5.
Healthcare (Basel) ; 10(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36553864

RESUMEN

Brain tumors (BTs) are an uncommon but fatal kind of cancer. Therefore, the development of computer-aided diagnosis (CAD) systems for classifying brain tumors in magnetic resonance imaging (MRI) has been the subject of many research papers so far. However, research in this sector is still in its early stage. The ultimate goal of this research is to develop a lightweight effective implementation of the U-Net deep network for use in performing exact real-time segmentation. Moreover, a simplified deep convolutional neural network (DCNN) architecture for the BT classification is presented for automatic feature extraction and classification of the segmented regions of interest (ROIs). Five convolutional layers, rectified linear unit, normalization, and max-pooling layers make up the DCNN's proposed simplified architecture. The introduced method was verified on multimodal brain tumor segmentation (BRATS 2015) datasets. Our experimental results on BRATS 2015 acquired Dice similarity coefficient (DSC) scores, sensitivity, and classification accuracy of 88.8%, 89.4%, and 88.6% for high-grade gliomas. When it comes to segmenting BRATS 2015 BT images, the performance of our proposed CAD framework is on par with existing state-of-the-art methods. However, the accuracy achieved in this study for the classification of BT images has improved upon the accuracy reported in prior studies. Image classification accuracy for BRATS 2015 BT has been improved from 88% to 88.6%.

6.
Healthcare (Basel) ; 10(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36011249

RESUMEN

Home healthcare agencies (HHCAs) provide clinical care and rehabilitation services to patients in their own homes. The organization's rules regulate several connected practitioners, doctors, and licensed skilled nurses. Frequently, it monitors a physician or licensed nurse for the facilities and keeps track of the health histories of all clients. HHCAs' quality of care is evaluated using Medicare's star ratings for in-home healthcare agencies. The advent of technology has extensively evolved our living style. Online businesses' ratings and reviews are the best representatives of organizations' trust, services, quality, and ethics. Using data mining techniques to analyze HHCAs' data can help to develop an effective framework for evaluating the finest home healthcare facilities. As a result, we developed an automated predictive framework for obtaining knowledge from patients' feedback using a combination of statistical and machine learning techniques. HHCAs' data contain twelve performance characteristics that we are the first to analyze and depict. After adequate pattern recognition, we applied binary and multi-class approaches on similar data with variations in the target class. Four prominent machine learning models were considered: SVM, Decision Tree, Random Forest, and Deep Neural Networks. In the binary class, the Deep Neural Network model presented promising performance with an accuracy of 97.37%. However, in the case of multiple class, the random forest model showed a significant outcome with an accuracy of 91.87%. Additionally, variable significance is derived from investigating each attribute's importance in predictive model building. The implications of this study can support various stakeholders, including public agencies, quality measurement, healthcare inspectors, and HHCAs, to boost their performance. Thus, the proposed framework is not only useful for putting valuable insights into action, but it can also help with decision-making.

7.
Tomography ; 8(4): 1905-1927, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35894026

RESUMEN

A brain tumor is the growth of abnormal cells in certain brain tissues with a high mortality rate; therefore, it requires high precision in diagnosis, as a minor human judgment can eventually cause severe consequences. Magnetic Resonance Image (MRI) serves as a non-invasive tool to detect the presence of a tumor. However, Rician noise is inevitably instilled during the image acquisition process, which leads to poor observation and interferes with the treatment. Computer-Aided Diagnosis (CAD) systems can perform early diagnosis of the disease, potentially increasing the chances of survival, and lessening the need for an expert to analyze the MRIs. Convolutional Neural Networks (CNN) have proven to be very effective in tumor detection in brain MRIs. There have been multiple studies dedicated to brain tumor classification; however, these techniques lack the evaluation of the impact of the Rician noise on state-of-the-art deep learning techniques and the consideration of the scaling impact on the performance of the deep learning as the size and location of tumors vary from image to image with irregular shape and boundaries. Moreover, transfer learning-based pre-trained models such as AlexNet and ResNet have been used for brain tumor detection. However, these architectures have many trainable parameters and hence have a high computational cost. This study proposes a two-fold solution: (a) Multi-Scale CNN (MSCNN) architecture to develop a robust classification model for brain tumor diagnosis, and (b) minimizing the impact of Rician noise on the performance of the MSCNN. The proposed model is a multi-class classification solution that classifies MRIs into glioma, meningioma, pituitary, and non-tumor. The core objective is to develop a robust model for enhancing the performance of the existing tumor detection systems in terms of accuracy and efficiency. Furthermore, MRIs are denoised using a Fuzzy Similarity-based Non-Local Means (FSNLM) filter to improve the classification results. Different evaluation metrics are employed, such as accuracy, precision, recall, specificity, and F1-score, to evaluate and compare the performance of the proposed multi-scale CNN and other state-of-the-art techniques, such as AlexNet and ResNet. In addition, trainable and non-trainable parameters of the proposed model and the existing techniques are also compared to evaluate the computational efficiency. The experimental results show that the proposed multi-scale CNN model outperforms AlexNet and ResNet in terms of accuracy and efficiency at a lower computational cost. Based on experimental results, it is found that our proposed MCNN2 achieved accuracy and F1-score of 91.2% and 91%, respectively, which is significantly higher than the existing AlexNet and ResNet techniques. Moreover, our findings suggest that the proposed model is more effective and efficient in facilitating clinical research and practice for MRI classification.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Neoplasias Meníngeas , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...